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ABSTRACT
We present a similarity metric for Android unlock patterns to
quantify the effective password space of user-defined gestures.
Our metric is the first of its kind to reflect that users choose
patterns based on human intuition and interest in geometric
properties of the resulting shapes. Applying our metric to a
dataset of 506 user-defined patterns reveals very similar shapes
that only differ by simple geometric transformations such as
rotation. This shrinks the effective password space by 66% and
allows informed guessing attacks. Consequently, we present
an approach to subtly nudge users to create more diverse
patterns by showing background images and animations during
pattern creation. Results from a user study (n = 496) show
that applying such countermeasures can significantly increase
pattern diversity. We conclude with implications for pattern
choices and the design of enrollment processes.
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INTRODUCTION
Today’s smartphones provide access to a lot of sensitive in-
formation, motivating users to use authentication mechanisms
such as PINs, patterns, Face Unlock or Touch ID.

Unlock patterns are particularly popular among users [31],
since visual passwords are usually easy to remember. In addi-
tion, failure to log in comes at low cost, as users can immedi-
ately re-enter their pattern [31]. However, unlock patterns are
prone to different types of attacks based on shoulder surfing
[30] or the analysis of smudge stains on the screen [4]. In
addition, analyses of user-defined unlock patterns indicated
that users follow predictable selection strategies [28]. As a
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MUM ’16, December 12 - 15, 2016, Rovaniemi, Finland

© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4860-7/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/3012709.3012729

A = “1478” B = “2589”

1

1

4

7 8 9

2 3

5 6

C = “4563”
Figure 1. Unlock patterns are usually represented by digits. While such
codes indicate different passwords, all three patterns are based on a sim-
ple L-shape. The similarity metric proposed in this paper assesses the
distance between such patterns by analyzing the number of geometric
transformations needed to convert one pattern into another.

consequence of this biased pattern choice, only a subset of
the theoretically possible pattern space is actually used. This
makes the Android unlock system prone to dictionary attacks.

In this paper, we present a two-fold approach to assess and
address the lack of pattern diversity: First, we introduce a
novel measure to assess the strength of given unlock patterns
based on their geometric similarity (Figure 1). We follow
Li and Vitányis’s use of the Kolmogorov Similarity measure
[15]. It quantifies similarity through the computational efforts
required to derive a given representation of a data object A
from another one B. We adopt this metric in a greedy clus-
tering algorithm to reveal pattern groups and central patterns,
which are similar to as many others as possible. The results
show that applying up to two simple transformations already
reduces the given practical pattern space by about two thirds.
This indicates that humans indeed favor a small set of known
shapes over semi-random sequences of strokes.

Consequently, the second part of our work aims at increasing
practical pattern diversity. Motivated by promising results
in other projects [1, 10], we present an approach that subtly
nudges users to create more diverse patterns via images and
animations. These images are shown in the background of
the grid used for pattern creation. Results from a user study
indicate that such simple changes in the user interface can lead
to a significantly more diverse practical pattern space.

In summary, we contribute: 1) a user-centric metric to measure
the diversity of pattern choices, applied to 506 user-defined un-
lock patterns; 2) a large-scale evaluation (n=496) of a method
to increase pattern diversity via background images shown at
the time of enrollment; 3) important insights on user-defined
unlock patterns; and 4) implications for the design and the
evaluation of novel authentication concepts.

http://dx.doi.org/10.1145/3012709.3012729


RELATED WORK
Android unlock patterns can be categorized as drawmetric
graphical passwords [5, 21]. In general, drawmetric con-
cepts are based on the recall of a previously memorized shape,
sketch or gesture [12]. The first drawmetric password system,
Draw-a-Secret (DAS) [14], allowed arbitrary drawings on a
5× 5 grid-based canvas. Over the following years various
modifications of Draw-a-Secret were proposed. For example,
Passdoodles [29] resigned the visible grid or Qualitative Draw-
A-Secret (QDAS) [16] relied on qualitative direction changes.
Finally, Tao and Adams [26] presented Pass-Go which was
based on predefined shapes which appeared whenever sensitive
areas at the intersections of the grid were touched. Android
unlock patterns [4] can be seen as a successor of Pass-Go as
the designers followed the idea of activating predefined areas.
However, the concept was further simplified by limiting the
active input area to a 3×3 grid of touchable cells.

Today, Android patterns are widely accepted as a usable alter-
native to alphanumeric secrets [31]. However, research has
shown that the input of unlock patterns is relatively easy to
observe [30] and most patterns are easy to guess [28]. The pre-
dictability of drawmetric passwords has first been discussed
by Nali and Thorpe [19] who analyzed Draw-a-Secret and
found out that users prefer symmetric shapes with few strokes
and tend to place them in the center of the grid. The anal-
ysis of Android unlock patterns indicated similar problems.
Uellenbeck et al. [28] reported that most patterns are drawn
from left to right and that users prefer the upper left cell as
a starting point. Andriotis et al. [3] confirmed that biased
selection behavior limits the practical password space of the
authentication system.

Over the following years proactive pattern checking was dis-
cussed as a possible solution [2, 23, 24, 25]. Analogous to
alphanumeric password meters, pattern meters calculate the
strength of a given pattern based on specific composition as-
pects. Proposed metrics included pattern length [2, 24, 25],
direction changes [2] or so called knight moves1 [2]. How-
ever, the relative weights of these measures were not further
evaluated and it remains unclear which pattern features make
the secret hard to guess. Nevertheless, simulated guessing
attacks indicated that the presence of pattern meters results
in a harder-to-guess pattern selection. On the downside, the
starting points were hardly influenced [23].

The literature review reveals that pattern strength is mostly
derived from composition characteristics like length or com-
plexity. However, user studies concerning alphanumeric pass-
words indicated that such metrics do not reflect user choice
and therefore have limited value for predicting guessability
[11, 18]. Moreover, the performance of simulated guessing
attacks strongly depends on appropriate training data [32]. As
unlock patterns are usually stored on the device, many patterns
for training can only be collected during simulated enrollments
within user studies, which questions the comparability of this
method. Even though a recent field study [13] analyzed meta
data of the entered secrets (e.g., pattern length), the actual
pattern was not recorded.

1A connection of two nodes which are not neighboured (e.g., 2-7).

In addition to proactive recommender systems, changes in the
graphical user interface were shown to influence password
choice [27]. Uellenbeck et al. [28] proposed several redesigns
of the common 3×3 pattern grid. The analysis revealed that
new layouts anticipated known selection patterns but at the
same time introduced new predictable behavior. This indi-
cates that simply changing from one layout to another is not
effective in the long run. Instead of changing the grid layout,
Dunphy et al. [10] proposed to add background images to the
Draw-a-Secret concept to more subtly influence user choice.
The results revealed that background images can nudge users
to select more complex and less symmetric patterns. In addi-
tion, the resulting sketches were significantly longer and less
centered. Por et al. [20] confirmed these positive effects with
a version of Pass-Go. Finally, it was also shown in the context
of authentication schemes where passwords are defined as a
sequence of pass-points on an image that the underlying image
has a strong effect on password choice [1, 7].

The remainder of this paper is structured as follows. Firstly,
we present a new metric for grid-based patterns which is based
on geometric similarity and the assumption that unpopular
patterns are more secure [17, 22]. Secondly, we present a
concept based on related work [10] which applies background
images and animations to the Android pattern unlock to nudge
users to select more diverse patterns. In addition to lab-based
evaluations, we analyze the impact of this concept in a large-
scale online study. We then compare the resulting patterns
to the standard Android unlock patterns using the proposed
similarity metric. The paper closes with a discussion on pat-
tern predictability, possible countermeasures, and the general
impact of the study design.

A SIMILARITY METRIC FOR UNLOCK PATTERNS
Our approach compares patterns according to their geometric
similarity. While popular patterns are assumed to be easy to
guess, patterns which significantly differ from such popular
patterns are assumed to provide a higher level of security. In
contrast to simulated guessing attacks the proposed metric sup-
ports the detailed comparison of multiple pattern sets without
the need for training data.

Definition
The goal of our work is to determine how many similar shapes
a given set of user-defined unlock patterns contains. To this
end, we first define a similarity metric inspired by Euclidean
plane isometries [6]: Two patterns A and B are n-similar for
n∈N0 resp. a set of transformations T , if A can be transformed
into B with exactly n geometrical or logical transformations
from T .

For example, if we choose n = 1, this means that patterns in
the same group differ by one transformation. We define the
following transformations T :

• Rotation: Rotate a pattern by 90, 180 or 270 degrees
• Translation: Translate a pattern by 1 point in either north,

east, south or west direction
• Mirror: Mirror a pattern on the x-axis or y-axis
• Inversion: Traverse a pattern in inverted order
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Figure 2. “Circle-packing” chart visualizing the results for n≤ 2 (based
on 506 samples). Each white circle is a pattern; its size grows with its
total occurrence count in the database. Dark circles enclose groups of
similar patterns. The small white circles in the center represent patterns
that remained unique after applying the grouping algorithm.

If A and B are equal, they are assigned a distance of 0, thus
matching the Kolmogorov distance [15]: A higher number of
operations translates to higher computational complexity. We
limit our analysis to groups of congruent patterns (with equal
length), since we consider shapes to be an important property
in the pattern creation process, and a change in length often
alters the shape of a pattern.

Grouping Patterns
We cluster patterns based on similarity, as defined above. Each
group contains all patterns n-similar to a “central” pattern
within the group. Each pattern is assigned to exactly one
group. Choosing the central patterns in a way that minimizes
the total number of groups presents an optimization problem.

Example Problem
To motivate and explain our approach to solving this problem,
consider the following example:

A 1−→ B 1−→C

with n = 1 for the pairs {(A,B),(B,C)}. This is a common
situation – imagine A being an “L” aligned to the left ( ), B
the same “L” translated right ( ), and C being B rotated by
90 degrees ( ). This means that A has a distance of two to
C, while B has a distance of one to both (see Figure 1). The
optimization problem is evident here: If we choose n = 1 (i.e.
the maximum distance within groups is 1) and start with A as
a central pattern, this would result in two groups {A,B} and
{C}. If we used B as the central pattern instead, we would
only need a single group {A,B,C}.

Approach - Greedy Clustering
In general, finding the “best” set of central patterns is equiv-
alent to the Minimum Set Covering problem [9], and thus
NP-hard. Therefore, an optimal solution cannot be computed
for problems of interesting size in a feasible amount of time.
As a consequence, we use a greedy algorithm instead. In each
step, we add one ungrouped pattern to the set of central pat-
terns – the one which is n-similar to the largest number of

yet ungrouped patterns. This procedure is repeated until each
pattern is part of one group, possibly a group containing only
one pattern (i.e. a unique one, which cannot be derived with n
transformations from any other pattern).

In this work, we consider a maximum of n=2, because we
are particularly interested in closely related patterns. Figure 2
visualizes2 the results of the greedy clustering applied to a
dataset, collected under standard Android conditions. It shows
that despite a number of unique patterns (in the center), the
vast majority of patterns belongs to groups, meaning that they
can be derived from each other with simple transformations.
The next section discusses the results in detail.

ASSESSING THE SIMILARITY OF UNLOCK PATTERNS
The similarity metric is now applied to a set of 506 user-
defined Android unlock patterns.

Data Collection
To quickly collect a huge set of real-life unlock patterns, we
utilized Amazon Mechanical Turk (MTurk).

Procedure
After the task was accepted, the MTurk users were asked to
open an external URL on their smartphone, linking to our
web application. We used PHP Mobile Detect3 to ensure that
participants actually used their mobile devices to draw the
unlock patterns. The pattern creation process followed the
standard Android enrollment procedure4. This means that the
patterns had to be conform to the standard Android rules and
that selected patterns had to be confirmed once. Participants
were allowed to reset their pattern and start again. After the
input was recorded, we collected demographical data and
gathered information on the technical experience. Finally, we
provided a secret code which confirmed the completion of
the study. The whole procedure took 102 seconds on average
(SD=53). Each participant was compensated with US$ 0.5.

Participants
We checked that all participants provided the correct secret
code. In addition, we validated the given answers and excluded
participants who did not fulfill the requirements. For example,
we excluded participants who stated not to use mobile devices.
Finally, 506 participants contributed to the data set. All partic-
ipants were US citizens, 334 were male and 172 were female.
The average age was 28 years (18-67, SD=8). 50.2% reported
to use Android smartphones, 49.4% used iPhones.

Results
Basic Statistics
As each participant contributed one unlock pattern, the final
data set comprised 506 patterns. The average pattern length
was 5.03 points (SD=1.4). The favored starting point was at
the top left with 41.1%, and 20.0% of the patterns finished
at the bottom right. In terms of occurrence of complexity
aspects, the results of our dataset confirm what was found in
previous research [3, 28]. Only 7.3% of the patterns included
overlapping nodes, only 5.9% had knight moves.
2Generated with http://d3js.org Library, BSD license. Copyright 2015 Mike Bostock.
3http://mobiledetect.net/, MITLicense. Accessed: 2016/08/25.
4http://phandroid.com/2014/03/20/android-101-lock-screen/; Accessed: 2016/08/25.



Rank Top # Permutations # Occurrences % Dataset

1 (1478) 17 56 11.1
2 (1596) 9 25 4.9
3 (5896) 13 24 4.7
4 (1256) 8 23 4.5
5 (1235) 12 18 3.6

Table 1. The five largest groups for n ≤ 2. The table shows the most
frequent (top) pattern of each group, the number of different patterns
covered in the group, the accumulated absolute number of occurrences
for all patterns in the group, and the covered ratio of the whole dataset.

Length Total n = 0 n = 1 n = 2 n≤ 2

any 506 100% 350 69.2% 213 42.1% 179 35.4% 169 33.4%
4 262 51.8% 156 30.8% 68 13.4% 50 9.9% 44 8.7%
5 119 23.5% 94 18.6% 64 12.6% 56 11.1% 52 10.3%
6 48 9.5% 43 8.5% 38 7.5% 32 6.3% 32 6.3%
7 32 6.3% 22 4.3% 15 3.0% 15 3.0% 15 3.0%
8 15 3.0% 10 2.0% 10 2.0% 9 1.8% 9 1.8%
9 30 5.9% 25 4.9% 18 3.6% 17 3.4% 17 3.4%

Table 2. Absolute number of groups (unique patterns) by pattern length
for n ∈ {0,1,2} and their percentage of the dataset. Patterns with four
cells are exceptionally similar while patterns with six or eight cells are
more diverse.

Popular User Patterns
The similarity analysis confirms that users select their unlock
patterns from a rather limited pool of similar shapes. The
groups for n ≤ 2 with pattern length four deserve special at-
tention, as they include more than half of the patterns in the
dataset. The largest observed group is formed around the

-shape (Table 1). It covers 17 different permutations.

Hence, attackers brute-forcing their way through all these 17
permutations of will get a hit for 56 of the dataset’s 506
patterns – that is 11.1%. The second largest group comprises

-forms and covers nine different patterns, whose occurrences
account for almost 5% of our dataset. The group ranked
three includes and covers 13 different patterns with 24
occurrences in our data (4.7%). Together, the five largest
groups presented in Table 1 comprise 59 different patterns.
Their occurrences account for roughly 29% of the dataset.

Regarding patterns of lengths other than four, we highlight the
following results: The largest group contains patterns of length
seven and was the sixth largest group in total. The group cov-
ers 13 -shapes in four different permutations. This means
that over 40% of all length-seven-patterns can be derived from
this single form. Most (8.4%) of the length-five-patterns were
based on -forms, 23.3% of the length-nine-patterns formed

-shapes. Patterns with six or eight cells showed most diver-
sity.

Pattern Similarity
Figure 3 and Table 2 summarize the results: The total number
of gestures shrinks from 506 to 350 when removing duplicates
(i.e. n = 0). For a distance of 1, the total number of groups
is 213. Hence, considering those patterns as duplicates that
differ only by a single transformation already reduces the
number of unique patterns by about 57%. If we set n≤ 2, only
169 groups are left, as determined by the greedy grouping
algorithm. That is, the effective gesture space shrinks to one
third of its size when we consider all gestures with a distance
≤ 2 as duplicates.

Set	  1	  all Length Total n=0 n=1 n=2 n<=2
any 496 366 278 248 231

4 111 80 50 39 35
5 116 77 36 52 50
6 90 77 62 56 52 Set	  1	  vs.	  Set	  2
7 95 59 45 42 39
8 36 29 24 25 24 n=0 n=1 n=2 n<=2
9 48 44 34 34 31 Baseline 69,2% 42,1% 35,4% 33,4%

First	  Set	  (Any) 73,8% 56,0% 50,0% 46,6%
Set	  2	  all Length Total n=0 n=1 n=2 n<=2 Second	  Set	  (Any) 78,8% 56,7% 53,8% 49,8%

any 496 391 281 267 247
4 89 70 36 35 30
5 122 83 50 50 45
6 103 91 68 66 61
7 87 66 53 50 48
8 33 31 29 28 26
9 62 50 39 37 37

set	  1	  dyn Length Total n=0 n=1 n=2 n<=2
any 256 210 164 148 139

4 69 54 35 33 27
5 54 46 38 32 32
6 48 44 36 33 30
7 49 34 27 24 24
8 20 16 15 14 14
9 16 16 13 12 12

set	  2	  dyn Length Total n=0 n=1 n=2 n<=2
any 256 219 171 159 148 Static	  vs.	  Dynamic

4 54 46 29 25 23
5 58 47 33 31 27 n=0 n=1 n=2 n<=2
6 53 48 41 39 36 Static	  (Set	  1) 83,3% 66,3% 59,2% 55,0%
7 49 40 34 33 31 Dynamic	  (Set	  1) 82,0% 64,1% 57,8% 54,3%
8 14 13 13 12 12 Static	  (Set	  2) 85,0% 66,7% 63,3% 60,0%
9 28 25 21 19 19 Dynamic	  (Set	  2) 85,5% 66,8% 62,1% 57,8%

set	  1	  stat Length Total n=0 n=1 n=2 n<=2
any 240 200 159 142 132

4 42 37 30 20 18
5 62 46 35 28 27
6 42 39 32 31 29
7 46 33 25 24 23
8 16 15 13 15 13
9 32 30 24 24 22

set	  2	  stat Length Total n=0 n=1 n=2 n<=2
any 240 204 160 152 144

4 35 32 21 19 17
5 64 46 34 31 31
6 53 48 38 36 35
7 38 32 27 26 25
8 19 19 16 18 15
9 34 28 24 22 21

baseline Length Total n=0 n=1 n=2 n<=2
any 506 350 213 179 169 Total n=0 n=1 n=2 n<=2

4 262 156 68 50 44 Unique	  Patterns 506 350 213 179 169
5 119 94 64 56 52
6 48 43 38 32 32
7 32 22 15 15 15
8 15 10 10 9 9
9 30 25 18 17 17

n=0	   n=1	   n=2	   n<=2	  
Baseline	   69,2%	   42,1%	   35,4%	   33,4%	  

First	  Set	  (Any)	   73,8%	   56,0%	   50,0%	   46,6%	  

Second	  Set	  (Any)	   78,8%	   56,7%	   53,8%	   49,8%	  
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Figure 3. Total number of unique gestures (groups) for n∈ {0,1,2}. Con-
sidering n≤ 2 reduces the effective gesture space by 66%.

If we focus on the more than 50% of participants who used
patterns with a length of four, we find exceptionally high
similarity: As shown in Table 2, the grouping algorithm here
reduces the effective space from 262 patterns to 44 similarity
groups (-83%) with n≤ 2.

Patterns with length ≥ 5 show less similarity than patterns of
length four. However, the results in Table 2 imply that the
ratio between total pattern count and number of groups does
not shrink linearly with pattern length. Instead, it reaches a
minimum for length six, where the number of effective patterns
is reduced by just 33%. Length eight is close second with a
reduction by 40%, and the unique pattern count for length
nine is reduced by 43%, indicating very predictable selection
strategies. For most pattern lengths, the unique pattern count
is reduced by approximately 50%.

Implications
The analysis of the collected unlock patterns confirmed that
users indeed follow predictable strategies when selecting such
patterns. We confirmed that user-defined patterns are usually
short (avg. 5 points), start on the top left of the matrix and end
on the bottom right. In addition to these basic insights, the
application of our proposed metric revealed that the most used
patterns are made up of very similar shapes.

This was especially the case for short patterns. Here, over
80% could be traced back to the popular -shape. Overall,
considering a similarity distance of two reduced the effective
pattern space by approximately 66%. Thus, we conclude that
pattern composition strategies are even more predictable than
previous analyses of complexity aspects indicate [3, 28].

The insights of this analysis enable an attacker to cover more
than a quarter of the unlock patterns by memorizing the center
pattern of the five largest groups and applying simple geomet-
rical transformations. As a consequence, we argue that novel
concepts which increase the diversity in the effective pattern
space need to be designed and evaluated.

We assume that applying the same explicit feedback to all users
(e.g. pattern meters) may encourage them to select more cells,
but it does not necessarily facilitate pattern diversity. Hence,
the remainder of this paper investigates a more personalized
solution which aims to subtly nudge users to select a more
diverse set of patterns.



Figure 4. The five designs of the pre-study, from left to right: BackgroundStatic, BackgroundDynamic, NodeArrow, NodeSmiley and Forced.

INCREASING THE DIVERSITY OF UNLOCK PATTERNS
Previous work revealed that a promising approach to improve
the user choice of graphical passwords is based on changing
the design of a user interface [7, 27, 28]. For drawmetric
concepts, the use of background images was specifically advo-
cated [10, 20].

Concept Development and Pre-Study
The concepts were developed following a thorough design
process, based on brainstorming sessions, preliminary user
studies and multiple iterations. After the literature review and
a first round of brainstorming, we came up with five different
design candidates.

Design Candidates
The primary goal of the concepts was to influence the starting
position of the patterns, as we assumed that different starting
positions would most likely result in different shapes. Figure 4
illustrates the five design candidates.

For the BackgroundStatic scheme we chose a greyscaled image
of a girl5. The image contained several hotspots, such as the
eyes or the mouth which are likely to attract visual attention
[8]. This scheme is close to the original idea by Dunphy and
Yan [10]. The BackgroundDynamic condition was based on a
looped video of air bubbles6 floating in water. The bubbles had
different sizes and moved from bottom to top with individual
speed.

In addition, we designed two concepts which focused on mod-
ifying single cells. The NodeArrow concept highlighted one
of the nodes in the grid with an upward pointing arrow. For
the NodeSmiley scheme, we decided to utilize the smileys7 of
a messenger app. We assumed that the majority of the users
would be familiar with the smileys and would thus be less
confused by them. Furthermore, we expected that users would
opt for selecting positive faces. Therefore, we distributed the
smileys in such a way that the nodes that are usually rarely
selected were emphasized by the happy smileys, whereas we
positioned the sad and angry smileys towards the upper left
corner.

Finally, we added a Forced condition, which predefined a
starting point and highlighted it by a green circle.

5“love this face” by Jack Fussell, licensed under CC BY-NC-ND 2.0
(https://www.flickr.com/photos/travelingtribe/3844008664); accessed: 2016/08/25.
6“Air Bubbles Live Wallpaper”, reproduced with permission by Eugene Pestov
(https://www.youtube.com/watch?v=fLbhOILIEcs); accessed: 2016/08/25.
7Based on Apple Color Emoji font

Pre-study
The five designs were implemented using HTML5, CSS and
JavaScript and evaluated in a lab-based user study. The study
was conducted using a within-participants repeated-measures
design. The dependent variable was the starting point, the
independent variable was the background image scheme with
five levels. The order of the schemes was randomized. We
collected the participants’ patterns as well as qualitative data
via interviews and a questionnaire.

We invited ten participants (25–34 years), seven of them fe-
male, via email and personal contacts. We informed the par-
ticipants that we tested new authentication concepts but we
did not reveal the purpose of the background images. For
each scheme, we then asked them to spontaneously choose an
unlock pattern, using the web-based prototype. Each session
took about 20 minutes and was recorded for later analysis. As
an incentive for participating in our study, a 20 Euro shopping
voucher was raffled among all participants.

The results of the pre-study indicated that all five design can-
didates had high potential to influence the starting points. In
the BackgroundStatic condition, the majority (80%) of the
participants started their pattern above or underneath the girl’s
face, that is from node two, three or nine, in order to frame her
face clockwise or counter-clockwise. In addition, participants
generally avoided crossing the girl’s face. The Background-
Dynamic scheme nudged participants to draw their pattern
from bottom to top along with the floating bubbles. Half
of the participants started in the lower left corner where the
movement was strongest. Using the NodeArrow scheme, 90%
of the users started from or above the node highlighted by
the arrow and 80% continued their patterns in the direction
the arrow pointed. Finally, the NodeSmiley scheme led to
the most evenly distributed starting points compared to the
other schemes. Participants used primarily happy smileys and
smileys whose facial expression was more salient.

After the debriefing, the users’ feedback revealed that the
NodeArrow concept was by far the most unpopular scheme.
Four participants perceived the arrow in the background as
confusing since it “pretended a limited pattern choice”. One
participant stated that “it almost felt like a regulation”. The
same was true for the Forced starting point. However, two
participants mentioned that a predetermined starting point
might lead to more secure patterns. The BackgroundDynamic
was more polarizing. Half of the users mentioned it was
annoying as it was “too busy” or “made it hard to see the
actual nodes”.



Figure 5. The final Background-Pattern Concept: The Static scheme
(left) and the Dynamic scheme (right). The smaller images illustrate the
different states (rotations) of the respective scheme.

On the other hand, the rest of the participants gave mostly
positive feedback: They stated that they liked the look of the
animation and thought it was a more subtle approach than
the Arrow scheme. BackgroundStatic and NodeSmiley were
rated best. However, two participants said they did not really
notice the background image and suggested more salient im-
ages. Overall, the NodeSmiley scheme was similarly popular.
However, one participant mentioned to be generally annoyed
by smileys, another user found the concept distracting.

Design Implications and Final Concept
The results and user feedback we received in the pre-study
were very promising, as all designs had an impact on the pat-
tern choice. However, the data did not immediately bring forth
a clear favorite for further investigation, but rather suggested
that there is a trade-off between the users’ acceptance and
the effectiveness of a scheme. Effectiveness was considered
as the strength of the impact on the starting points that was
qualitatively observed in the pre-study.

Due to their unpopularity, we decided to rule out the NodeAr-
row and the Forced schemes. The NodeSmiley scheme and
the BackgroundStatic scheme were the most popular concepts
and had shown a similar impact on pattern choice. The Back-
groundDynamic scheme had received mixed feedback, but the
hotspot in the lower left corner had a very strong impact on
the starting points. For better comparability to related work,
we finally decided to evaluate the BackgroundStatic and the
BackgroundDynamic versions as they were close to the BDAS
concept by Dunphy and Yan [10].

The final prototypes were improved based on the data gathered
during the pre-study. As the face-based background image
in the pre-study was considered to be not salient enough, we
opted for images with stronger contrasts and clearer hotspots.
On the other hand, the animation used in the pre-study was
perceived disturbing due to the strong movement of the bub-
bles. We therefore looked for a calmer animation in the final
prototype. Additionally, we decided to rule out the impact of
colors by using grayscale images for both concepts.

Furthermore, a feasible concept would need to apply visual
hotspots at random positions to induce a counterbalanced dis-
tribution of starting points. We opted for background images

which were neutral enough to allow rotation in different direc-
tions. Each rotation should have the effect that the main hot
spot would match one of the corner cells.

Figure 5 illustrates the final prototype comprising the used vi-
sualizations and the respective rotations. For the Static scheme,
we decided to use an abstract image8 showing several spot-
lights on a dark background, among which one spotlight is
particularly bright. For the Dynamic version, we chose to
utilize a looped video9 of a drop falling into water. The water
ripples spread concentrically, thus not suggesting a certain
drawing direction.

Main User Study
We conducted an online user study to evaluate the impact of
the concept on chosen starting points and on pattern similarity.
The independent variable was the background image with two
levels (Static and Dynamic). The study followed a between
groups design. Each participant was randomly assigned to one
specific rotation of one of the schemes.

Prototype
Since we wanted to collect a large set of unlock patterns,
we decided to perform the main user study online. In order
to avoid possible side effects arising from the utilization of
different input techniques, we restricted the study to laptops
and desktop computers using Mobile Detect. Please note
that we had to opt for desktop computers as preliminary tests
revealed that some popular mobile devices were not able to
correctly play the required animations.

The implementation was based on the prototypes from the
pre-study. Patterns could be drawn with the mouse while
pressing the button, releasing it to finish. Entered unlock
patterns had to comply with the Android pattern selection
rules. Moreover, the interface design was enhanced in order
to make the context more clear to the participants, and we
implemented a progress bar indicating the different steps of
the study. The used prototypes are shown in Figure 5. User
interaction was logged using PHP and a MySQL database.

Procedure
As we assumed that some users might enter familiar standard
patterns, we decided to collect two patterns per participant.
However, participants were allowed to enter the same pattern
twice. Each participant was presented with either the Static
or the Dynamic scheme, rotated in one of the four directions
according to a round-robin-wise assignment.

After they had entered two patterns, they were forwarded
to a questionnaire inquiring aspects of the patterns they had
selected, whether their choices were influenced by the back-
ground image and about the general perception of the concept.
In addition, we collected basic demographic data. As an incen-
tive for participating in our study, one E-book reader and five
10 Euro shopping vouchers were raffled among all participants.

8“Untitled” by I Love Trees, licensed under CC BY 2.0
(https://www.flickr.com/photos/ilovetrees/2770624201); accessed: 2016/08/25.
9“Water ripples” by ChoiceSlides bought on
http://choiceslides.com/products/water-ripples; accessed: 2016/08/25.



Rank First Pattern Second Pattern
Top # Permutations # Occurrences % Dataset Top # Permutations # Occurrences % Dataset

[A | S | D] [A | S | D] [A | S | D] [A | S | D] [A | S | D] [A | S | D] [A | S | D] [A | S | D]

1 | | 05 | 08 | 10 27 | 13 | 17 5.4 | 5.4 | 6.6 | | 06 | 06 | 08 21 | 16 | 13 4.2 | 6.6 | 5.1
2 | | 11 | 04 | 04 27 | 12 | 15 5.4 | 5.0 | 5.9 | | 14 | 09 | 06 20 | 11 | 11 4.0 | 4.6 | 4.3
3 | | 08 | 06 | 11 20 | 10 | 11 4.0 | 4.1 | 4.3 | | 05 | 03 | 04 19 | 09 | 10 3.8 | 3.8 | 3.9
4 | | 08 | 02 | 09 13 | 07 | 09 2.6 | 2.9 | 3.5 | | 09 | 04 | 07 19 | 09 | 07 3.8 | 3.8 | 2.7
5 | | 03 | 03 | 05 11 | 06 | 05 2.2 | 2.5 | 2.0 | | 05 | 06 | 04 12 | 08 | 07 2.4 | 3.3 | 2.7

Table 3. The five largest groups for n ≤ 2. For each condition, the table shows the most frequent (top) pattern of the group, the number of different
patterns covered in each group, the accumulated absolute number of occurrences for all patterns in the group, and the number of occurrences as a ratio
of the respective dataset. We report the whole set (≡ A), the Static set (≡ S) and the Dynamic set (≡ D) for both the first and second pattern set.

Participants
Participants were invited through a university-wide mailing
list. After seven participants were removed from the data due
to incomplete data sets, a total of 496 people contributed to the
user study. Due to our recruiting method, the study was primar-
ily distributed among younger people. The average age was 27
years (17–72 years). The gender was nearly counterbalanced
with 51.2% of the participants being female. The majority
(86%) of the participants reported to use a smartphone or a
tablet on a daily basis, with Android being the most popular
operating system (64%).

Results
This section presents the results of the background image study
and compares them to the baseline data.

Basic Statistics
As each participant contributed two patterns, the final data set
comprised two sets of 496 patterns each. Overall, the average
pattern length of the first set was 5.95 points (SD = 1.58).
Patterns of the Dynamic scheme were marginally shorter on
average (5.79, SD = 1.52), compared to those of the Static
scheme (6.12, SD = 1.62). Compared to the first set, patterns
of the second set were slightly longer (6.08, SD = 1.59). Again,
patterns of the Static scheme (6.18, SD = 1.61) were longer
than those of the Dynamic scheme (5.98, SD = 1.57).

A one-way mixed ANOVA was performed to compare the col-
lected data with the baseline data from the previous study. The
results revealed that the difference in average pattern lengths
of background image schemes and baseline patterns is signif-
icant (F(2, 999) = 61.72, p < .0001). Bonferroni-corrected
post-hoc tests revealed that this difference was significant
between both the patterns of the Dynamic scheme and the
baseline (p < .0001), and between the patterns of the Static
scheme and the baseline (p < .0001). However, there was no
significant difference between the average pattern lengths of
the two background image schemes (p > .05).

In the first pattern set, 47.8% of the users chose the upper
left corner as their starting point, in the second set this point
was prioritized by 36.1% of all users. In both sets, the lower
right corner was the most common endpoint with 28.0% and
25.2%, respectively. The complexity analysis reveals that,
compared to the baseline condition, more users decided to use
overlapping nodes or knight moves. 17.9% of the patterns in
the first set and 17.1% of the second set included overlaps. In
addition, 8.1% of the first patterns and 10.1% of the second
patterns comprised knight moves.

The Impact on Starting Points
In order to run statistical tests, we defined the respective node
highlighted by each background image rotation as the focused
node of this rotation. The focused node for both of the con-
cepts was either node one (top left), node three (top right),
node nine (bottom right) or node seven (bottom left). Further-
more, we defined the participants’ choice of starting points as
binary events: Either the starting point of a pattern does match
the focused node of the respective rotation, or it does not.

We analyzed this binary classification data using a two-tailed
binomial test. The test calculates the probability with which
the number of matches for the respective focused node would
have been the same in the baseline condition. For the first
pattern set, we found a significant association between the
Static condition focusing the bottom left and the distribution
of node seven with p = .004. For the second pattern set, the
test indicated that the association between the Static scheme
focusing the top right and the distribution of node three was
significant (p = .033). For all other rotations, the results of the
binomial test were not significant (p > .05).

Popular User Patterns
The analysis of popular unlock patterns reveals that was
chosen most often. We found 17 instances of this exact pattern
in the first set and 12 instances in the second pattern choice.
Overall, all patterns based on the -shape cover 4.6% of the
whole data set. In the baseline condition, the pattern was
chosen by seven users which makes it the most popular pattern
with length greater than four.

Table 3 illustrates the five largest pattern groups for n ≤ 2.
The data is split into the first and the second pattern input.
In addition to the overall statistics, we report the popular
patterns of the Static and Dynamic condition. The results
indicate that all conditions lead to a very similar set of shapes
which show only slight differences in form and distribution. In
addition, the patterns show high similarity to the most popular
patterns selected under standard conditions. Three groups of
the background schemes comprise shapes ( , , ) which
we had already seen in the baseline condition. The other two
popular shapes ( , ) of the baseline study are found in a
slightly modified longer version ( ).

While the top five popular shapes in the baseline condition
were all based on only four cells, the use of the background
schemes resulted in longer patterns. In the first pattern set,
only two of these popular shapes are made up of four cells,
two groups are based on five-cell-patterns and one pattern



n=0 n=1 n=2 n<=2
Static (Set 1) 83.3% 66.3% 59.2% 55.0%
Dynamic (Set 1) 82.0% 64.1% 57.8% 54.3%
Static (Set 2) 85.0% 66.7% 63.3% 60.0%
Dynamic (Set 2) 85.5% 66.8% 62.1% 57.8%
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Figure 6. The portion of unique patterns for the Static and the Dynamic
condition (n ∈ {0,1,2}). Both schemes lead to similar distributions. The
second input tends to comprise a larger variety of patterns.

group comprises length-seven-patterns. The second pattern
choice resulted in even longer popular patterns. Only one
group comprises length-four-patterns, three groups are based
on five or seven cells and one popular shape has the maximum
length nine ( ).

While the -shape covered over 11% of the whole data set
in the baseline condition, none of the shapes selected with
background images covers more than 6.6%. Overall, the five
most popular shapes in the baseline study covered 29% of the
data set. In contrast, shapes selected with background images
seem more evenly distributed as the top five groups of the
first set cover about 20% of the data, and respectively 18% for
the second set. Finally, Table 3 indicates that the selection of
longer shapes results in less permutations.

Pattern Similiarity
Figure 6 illustrates the unique pattern groups selected under
the Static and Dynamic conditions (n ∈ {0,1,2}). The re-
sults indicate no significant difference between both concepts.
However, user choice was more diverse when users selected
their second pattern. While the effective password space (i.e.
number of unique patterns) was reduced to 55% (Static) and
54% (Dynamic) in the first round, the second set still com-
prised 60% and 58% unique patterns, respecively after n≤ 2
transformations.

Figure 7 compares the effective pattern space of the first set
and the second set of both background schemes with the data
collected under standard conditions. The results reveal that
users chose a more diverse set of patterns when background
images were shown. While the baseline set comprises 31%
duplicates (n = 0), the first pattern set selected with the back-
ground schemes included 26% duplicates. The second pattern
set chosen under these conditions resulted in 21% duplicates.
Applying up to two transformations (n≤ 2) reduces the effec-
tive pattern space of the baseline set to 33%. The effective
pattern space of the first and the second set of the background
schemes remain larger. While the first pattern choice shrinks
to 47% of its size, half of the patterns chosen in the second set
stay unique.

The analysis of the sets according to their length confirms the
results of the baseline study. Patterns with a length of four,

n=0 n=1 n=2 n<=2
Baseline 69.2% 42.1% 35.4% 33.4%
First Set (Any) 73.8% 56.0% 50.0% 46.6%
Second Set (Any) 78.8% 56.7% 53.8% 49.8%
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Figure 7. The portion of unique patterns in the first and the second set
of the background condition and in the baseline condition (n ∈ {0,1,2}).
While the effective pattern space in the baseline condition shrinks to
33%, the background condition is less affected.

five and seven show the highest similarity, while patterns with
six or eight cells comprise more diverse shapes. Considering
up to two transformations shrinks the effective pattern space
of the first length-four pattern set to 31% of its size, the second
pattern set (length=4) is reduced to 33%. Under the baseline
condition, patterns of the same size were reduced to 17%.
In contrast, 67% of the firstly selected length-eight patterns
remain unique. Length-eight patterns in the second set are
even more diverse as the effective pattern space after two
transformations is 79%. In the baseline study, 60% of the
size-eight patterns remained unique (for n≤ 2).

User Feedback
The qualitative feedback revealed that dynamic background
images are more conspicuous than static ones. While only
54% of the participants assigned to the Static scheme reported
to have noticed the background image, 68% of the Dynamic
scheme users had consciously perceived the effect. At the
same time, 16% of the participants agreed or strongly agreed
that the Static background image affected their first pattern
choice and 6% indicated an impact for the second pattern. For
the Dynamic condition, only 8% of the participants indicated
an influence on their first pattern and 5% agreed with the
impact on the second pattern.

We collected both positive and negative feedback on our two
schemes as open-ended questions. Inductive coding compris-
ing two coders resulted in 362 and 318 code instances with
which we tagged answers, respectively. While the majority
of participants referred their feedback to unlock patterns in
general, only 18% of the code instances were related to our
background image schemes. Participants who indicated posi-
tive effects mostly said that they wanted to start from the node
highlighted by the background image (“I chose my starting
point to be at the brightest spot in the image”, “The waves
were mostly in the upper left corner. I started my pattern
there.”). In addition, more general impact was indicated. One
participant said the “[..] big shining points left and right gave
[her] an idea of [the] pattern [she] could use”. Another user
reported “[she] simulated the movement of the background”.
The facilitation of the selection process and the “rethinking”
of the first idea for the pattern were also mentioned as positive
psychological effects.



In contrast to such reinforcing effects, several users reported
negative influences. Some avoided the visual elements of
the background images in their pattern. For example, one
participant reported “[she] took the four dots where no white
circles were [...]”. Some participants did not like the visual
appearance in general and said the background image was
“not very inviting”. Moreover, several participants claimed that
the background interfered with the nodes in the grid or with
their pattern. In addition, some participants reported that the
background was confusing, distracting or irritating.

Other answers revealed interesting insights on how users un-
derstood the concept. For example, one participant stated that
she “thought of [the image] as a plain background without
further function” and that “the system could [have been] more
obvious”. Another participant thought that the image was
meant to “simulate the reflection of a real display”, and a third
one said that it was “a nice idea”, but suggested “to use a
better picture”. When asked how often they would like the
background images to be displayed in practice, 37% stated
that they should be displayed every time they unlock their
device. A third said that the background images should never
be displayed, followed by 20% who wanted the background
images to be displayed only during pattern selection.

DISCUSSION
The application of the similarity metric and the evaluation of
background images in combination with Android unlock pat-
terns revealed several interesting insights into user preferences
and pattern similarity and shows the impact of the chosen
evaluation strategy in experimentation. This section links the
main results and discusses their implications.

Pattern Length is an Important Security Feature
The analysis of user-defined unlock patterns revealed that
primarily short patterns are more similar. Under baseline
conditions, 21% of all patterns with the length of four could be
traced back to simple -shapes. This is a serious security issue
as over 50% of the participants in this group chose patterns
of this length. Overall, the effective pattern space for such
short patterns was reduced to 17% of its actual size. In the
background image condition, only 20% of participants decided
to base their pattern on four cells and chose a more diverse set.
The effective space still was reduced to one third of its actual
size.

In contrast, longer patterns generally comprised less similarity.
We therefore conclude that pattern length is indeed a funda-
mental security measure. However, it is important to note
that pattern length cannot be used as a linear security feature
as the maximum diversity was found for six and eight cells
but dropped for patterns using seven cells or the whole grid
(length = 9). This aspect was found in both the baseline and the
background concept and results from the users’ preferences
for specific shapes.

There is More to Strength than Length
In contrast to others, the proposed metric reflects human in-
terest in geometric properties. Analyses with our metric thus
consider similarity to other patterns as more important than

properties of their composition. This revealed that only a cer-
tain sub-space of the theoretically possible set of patterns is
actually used: For example, knowing a single pattern, namely
the center of the largest group in our baseline dataset, one can
deduce more than a tenth of our whole dataset by applying
only up to two simple geometric transformations.

This knowledge renders patterns much more susceptible to
informed guessing attacks than what is usually anticipated,
when just looking at the theoretical number of combinations.
In addition, the metric identifies popular shapes which are not
necessarily found in the top ranks of unique patterns but still
cluster a significant portion of the pattern space. We thus argue
that pattern strength is better assessed by measures that con-
sider human factors, such as geometric similarity, compared
to measures that are purely based on obvious properties of
pattern composition, such as their length.

Users Prefer a Small Set of Similar Shapes
The analysis confirmed that users indeed prefer short patterns
based on simple shapes. The similarity analysis revealed that
the selection of Android unlock patterns is even more restricted
than previous work assumed. Previous studies already ana-
lyzed most frequently used patterns and reported the preferred
use of -shapes and -shapes. Our analysis showed that most
patterns which seem unique at first glance are close relatives
of these shapes.

Combined with the knowledge that over 40% of patterns
started at the upper left node, this significantly reduces the the-
oretical security of the systems. Based on the results, we argue
that proactive pattern meters need to consider such shapes in
form of a dictionary when assessing the security of an entered
pattern. This is important, for example, as a composition-
based analysis of the -pattern would indicate the use of
special moves (i.e. the overlap) and medium length. At the
same time this pattern was the fifth popular pattern in the first
set collected with background images. The same is true for
the analysis of the -shape or the -pattern which would
lead to high length scores. Nevertheless, such strength values
would not reflect the practical security of these patterns as
such popular shapes are more prone to dictionary attacks.

Some Users are Resistant to Background Images
Only slightly more than half of the participants assigned to the
Static scheme and two-thirds of the participants assigned to
the Dynamic scheme stated to have noticed the background
images. Only a minority of the participants agreed that the
background image did actually influence their pattern choice.

However, the evaluation of the background image concept
indicated that users in this group selected a more diverse set
of longer patterns. The effect was present for both the Static
condition and the Dynamic condition. This indicates that the
concept has an unconscious influence in general, which affects
only a subset of users. We assume that the characteristics of
the used background image significantly influence its percepti-
bility. In addition, the response to different image types might
vary between users. We therefore conclude that the interplay
between specific features of the visualization and the impact
on particular user groups needs further investigation.



The Force of Habit is Hard to Break
Our analysis indicated that pattern selection habits can indeed
be changed slightly with background images. However, it
is presumably very difficult to entirely change the existing
behavior, which is already heavily biased towards starting
in the top left corner. In particular, it seems infeasible to
nudge users to start at the opposite cell, meaning at their most
common end point (i.e. bottom right). Our results confirmed
that participants prefer Android unlock patterns that follow
the general direction of the reading process (left to right; top
to bottom). Moreover, considering the popularity of -like
patterns, squares and other known shapes, users tend to stick
to what they already know.

Still, we found significant influences of static images on start-
ing at the top right and bottom left corners, presumably be-
cause these cells are still more in line with starting point and
direction of reading habits, compared to completely flipping
this flow around (i.e. starting at bottom right). In addition,
when background images were present, users chose (slightly)
more complex modifications of known shapes (e.g. , ). We
thus conclude that suitable concepts should not try to change
existing behavior completely, but can find useful opportunities
in aiming at slight changes within these general habits.

Repeated Measures Design is Unfeasible
During the development process, we evaluated the background
schemes and three other designs in a lab-based pre-study. The
outcome of the pre-study was very promising as all concepts
had a significant impact on the chosen starting point. This
impact was confirmed by the participants’ qualitative feedback.
In contrast to such promising results, the online study indicated
only minor impact on pattern choice and only a small fraction
of the users chose the intended starting points. We therefore
conclude that the study design had a significant impact on the
outcome. Since the lab study was designed following a re-
peated measures design, participants were exposed to different
designs and adapted their behavior accordingly. In the online
study, each participant was exposed to only one condition. We
argue that repeated measure designs are unfeasible whenever
behavior changes shall be observed.

LIMITATIONS
Our metric reflects that users do not create patterns at random,
but rather guided by geometric properties. To achieve this, we
currently employ a simple pattern distance, namely counting
geometric transformations. However, we do not know how
different geometric transformations compare to one another
in terms of the users’ perceived similarity. Hence, different
transformations should possibly be counted with different
relative weights, not all contributing to the total distance with
the same weight, as we assumed here. Such weights should
be determined by future studies.

Nevertheless, our greedy algorithm itself is flexible and can
be adapted to work with any similarity metric. On the other
hand, pattern groups found with our greedy approach may not
match the global optimum. This is unavoidable for NP-hard
problems. However, as our insights are derived from analyses

of the largest groups and the most popular patterns, we expect
them to be rather stable.

Considering our evaluation strategies, not all confounding fac-
tors could be ruled out. The baseline dataset was collected via
Amazon Mechanical Turk, mostly completed by US citizens.
In contrast, the image study was conducted in Europe. This
could have had an impact on aspects of pattern selection. In
addition, the system setup was slightly different as participants
used indirect mouse input in the latter study.

However, both samples come from cultures with left-to-right
reading/writing and all participants received the same instruc-
tions. As we hypothesize that these are the major influencing
factors, we believe that they are indeed comparable with re-
spect to our analyses. Still, it is important to note that our
data might not be representative of other age groups and cul-
tures. Finally, as the study task was artificial and required no
memorization, the collected datasets might differ from actually
used real-world patterns. Nevertheless, the collected data is
consistent with the results reported by related work [13, 28].

CONCLUSION AND FUTURE WORK
In this work, we have presented a similarity metric for An-
droid unlock patterns. The metric is based on simple geometric
transformations (e.g. rotation) and identifies patterns which
are based on similar shapes. We utilized this metric to analyze
506 user-defined unlock patterns. We were able to show that
considering similarities of up to two simple transformations
reduces the effective pattern space of unlock patterns in our
set by approximately 66%. This result indicated that the effec-
tive pattern space of Android unlock patterns is significantly
smaller in practical use. Therefore, we argue that solutions to
make user-selections more diverse are required.

Consequently, we adapted the idea of Dunphy and Yan [10]
and designed an unlock pattern concept based on background
images. While the lab-based evaluation of the system was very
promising, the field study involving 496 users yielded only
small effects. Nevertheless, our analysis revealed that users
selected a more diverse set of longer patterns when background
images were present.

In summary, we claim that the results presented in this paper
are important for both, researchers who study user behav-
ior related to authentication systems, and users who want to
strengthen their choice of unlock patterns.

Future work should extend the presented metric by considering
more transformations and measuring similarity across patterns
of different length. Furthermore, one could investigate whether
overlaps and knight moves indeed increase security. Another
area worth studying is the perceived similarity of patterns. A
rotation might be more difficult to perform for human attackers
than a translation or inversion. Finally, we would like to
motivate other researchers to find countermeasures to avoid
predictable pattern selection and to propose systems which
have the potential to diversify pattern choice.
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