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ABSTRACT
Every person is unique, with individual behavioural charac-
teristics: how one moves, coordinates, and uses their body.
In this paper we investigate body motion as behavioural bio-
metrics for virtual reality. In particular, we look into which
behaviour is suitable to identify a user. This is valuable in
situations wheremultiple people use a virtual reality environ-
ment in parallel, for example in the context of authentication
or to adapt the VR environment to users’ preferences. We
present a user study (N=22) where people perform controlled
VR tasks (pointing, grabbing, walking, typing), monitoring
their head, hand, and eye motion data over two sessions.
These body segments can be arbitrarily combined into body
relations, and we found that these movements and their
combination lead to characteristic behavioural patterns. We
present an extensive analysis of which motion/relation is
useful to identify users in which tasks using classification
methods. Our findings are beneficial for researchers and prac-
titioners alike who aim to build novel adaptive and secure
user interfaces in virtual reality.
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1 INTRODUCTION
Every person is unique with individual behavioural charac-
teristics. A particularly salient one is physical body motion:
how one moves, coordinates, and uses body segments in re-
lation to each other [14, 32]. The idea originates back to the
Roman author Pollio’s thoughts on the correlations of ideal
human proportions [37], to which every person deviates in
some way. This creates the potential of using body relations
as biometrics.

In virtual reality systems, body motion is captured to pro-
vide a more immersed experience, ranging from head posi-
tion and angle, via hand movements, to eye tracking and full
body tracking capabilities [9, 26]. The increasing prolifer-
ation of VR devices will soon allow large-scale inferences
about user activity, movements, and behaviour to be made.
This research explores how motion data can be useful for
behavioural biometrics to identify users in VR.

Implicit biometric identification of users in VR opensmany
opportunities. Authentication can be realized through be-
havioural biometrics, hence minimizing interruptions usu-
ally caused by explicit authentication schemes [33, 45]. As
the user’s identity can be continuously assessed in the back-
ground, potential unauthorised access can be detected (and
the device locked) as the original user is still logged in. Fur-
thermore, usability can be enhanced. For example, in situ-
ations where devices are shared among people, the system
can detect a new user and adapt the UI to their preferences
or offer personalised content. For example, if within a family
an adult is identified from the first movements, an overview
of the day’s work could be shown, whereas when a child is
identified, their favourite cartoon may be triggered.
Therefore, we focus on how body motion, and the rela-

tions between body segments may be useful as behavioural
biometric in VR. This is interesting as many body move-
ments are not specific to one segment, such as the hand, but
often coordinate with other parts of the body such as the
arm relative to body posture or hands to each other, involv-
ing motor control, proprioception, or hand-eye coordination
[14, 22, 32]. Research showed that combinations of biometric
features can enhance identification accuracy [3, 5, 21]. Yet,
there are numerous combinations of body motion features.
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In this paper, we first analyse body motion and how move-
ments may relate to each other to identify body feature sets
of interest. We then conduct a user study to collect motion
data, particularly head, hands, and eye movement that can
be captures in current VR devices such as the HTC Vive,
Oculus Rift, or FOVE. The study involves common VR inter-
actions including pointing, grabbing, walking, and typing as
fundamental tasks to interact with virtual content. Lastly we
evaluate the motion data with machine learning methods to
analyse various body motion combinations with regards to
how accurate they allow user identification and authentica-
tion. We present detailed results of which motion is useful
to identify users in which tasks. For this reason, our main
contribution is in understanding which body relations are
more accurate to describe individual user behaviour.

Contribution Statement. First, we provide a theoretical anal-
ysis of body motion theories as basis for behavioural biomet-
rics. Second, we report on a user study (N=22) in which we
collected detailed motion recordings of hand, head, and eye
movements during different tasks. Third, we contribute an
analysis that reveals body features suitable for user identifi-
cation as well as authentication and assess accuracy.

2 RELATEDWORK
Behavioural biometrics research exploreswhat kind behaviour
may be unique to a user. The goal is to enable systems to
identify and authenticate users – usually in an implicit man-
ner. Systems can become more resistant to unauthorised
access, they can improve usability by avoiding physical or
digital tokens such as a key or a password [33, 45], or they
can adapt their UI to the user. The procedure can run in the
background as users interact normally without requiring to
explicitly provide identifiable information, such as a finger-
print or face ID. On current smartphones, researchers, for
example, showed how touch motion behaviour can be used
to identify users [7, 10, 12, 17, 23].

Use of body motions as behavioural biometrics has a long
tradition in security related research [13, 49]. Gait has been
extensively researched in the context of various possible fea-
tures as users inhere unique walking patterns [48]. Research
on anthropomeasures includes body motion as a whole, e.g.
by using depth sensors such as the Kinect, for person identi-
fication [1, 35]. Estimation of body height, shoulder breadth,
or stride information from cameras can be useful to design
systems that identify users form multiple biometric sources
[5, 21]. A user’s eye movement information such as saccadic
vigor, acceleration cues, and response to visual stimuli have
shown promising results on user authentication [39, 47].
These works show that various body movements are accu-
rate measures for person identification, which motivates us
to explore these in virtual reality systems.

Researchers investigated behavioural biometrics for mo-
bile, wearable, VR or AR devices. Kupin et al. assessed task-
driven biometric authentication and showed that using a
ball-throwing task, 14 users could be accurately identified
[25]. Mustafa et al. showed how head pointing motion from
Google Cardboard sensors can be used to identify users [36];
other researchers focused on head nodding to music [27] and
explicit head gestures from Google Glass [46]. GaitLock can
authenticate users during walking tasks from the on-board
inertial measurement units of a Google Glass to protect VR
and AR systems [40]. Ashbya et al. show how electroen-
cephalography in response to mental imagery tasks allow
accurate user authentication on low-cost headworn sensors
[2]. Brain Password leverages brain responses in relation to
visual stimuli as biometric features for smart headwear [29].
Prior work focuses on specific aspects of the user’s body
motion, which we complement with a more holistic view on
the combination of body motions.

Our work also contributes to the notion of soft biometrics
— behavioural traits that may not be unique features, but
can complement primary identifiers or be used temporarily
[20]. Reid and Nixon introduced a method to gather relative
measures based on comparative human descriptions. This
allowed subjects in video data to be accurately retrieved
[38]. Dantcheva et al.’s survey provides an exhaustive review
of research on different user characteristics, demonstrating
their use for person identification from soft biometrics [11].
The literature shows that body motions are promising

features with most papers focusing on single body segments
or sensors. As the body provides a plethora of motions as
potential features that are potentially related, we investigate
body motion and spatial relations to identify users in VR.

3 BODY MOTION & BEHAVIOURAL FEATURES
In HCI, the notion of Reality Based Interaction emphasises
that human-computer systems should take advantage of
pre-existing knowledge of reality; of relevance here are the
themes of Body Awareness & Skills and Environmental Aware-
ness & Skills [19]. We discuss body relation theories interest-
ing for biometrics. Figure 1 illustrates the theories of body
motion we consider. We apply these theories in context of
motion types available in current VR systems:

• Head: the intertial motion sensors of the VR headset
allow estimation of head position (HeadPos), direction
(HeadRay) and rotation.
• Hands: controllers allow estimating hand motion for
both dominant (DH) and non-dominant hands (NDH).
One can consider each hand’s position and pointing
ray separately (DHPos, NDHPos, DHRay, NDHRay).
• Gaze: by using eye trackers, we can track the direction
(ray) where the user is looking in the virtual scene.
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Figure 1: Body based motion and relations useful as biometric features.

Motor Control (Figure 1a)
In neuroscience research, Massion emphasises two types of
motor control that users can perform to fulfill a goal, con-
sidered here as stabilisation and movement [32]. Stabilisation
occurs when humans maintain a reference value against ex-
ternal and internal disturbances, for example,. to stabilise
body posture against wind. Movement denotes the displace-
ment of body segments toward a goal, for example, when
reaching out or grasping an object. Most motor acts have
both types of motor control combined, such as when raising
an arm, leg muscles are activated for postural control [4].

VR interactions can involve both types of the motor tasks.
For example, in a pointing task the user may first stabilise
their body to an optimal posture for the manual act, and then
perform the pointing movement. Thus, to describe a pointing
task more comprehensively to better capture individual user
behaviour, it may be relevant to include body position too
(here we consider the HMD location as approximation of
body position). Head position itself may be a good feature, as
every user will have a different body height. Thus, particular
feature combinations can be derived from:

• Position of body segment (head, hands)
• Movement/Motion of body segment (head, hands)

Proprioception (Figure 1b)
Proprioception is the ability of humans to sense the position,
orientation, and movement of their limbs, muscles, and joints
in relation to each other [14]. In HCI, it has been suggested
to enhance the UI, for example, for wearables [30] or vir-
tual reality interfaces [34]. Users frequently take advantage
of their proprioceptive senses, with the body providing a
physical reference frame in which to operate direct, precise,
and potentially eyes-free. For manipulation, holding an ob-
ject in the hand provides a good sense of its position and
greater sense of control. Conversely, understanding and con-
trolling an object can be more difficult when using non-linear
mappings between hand and object [8]. Another example
of proprioception are Guiard’s observations on bimanual
asymmetry [16]. The NDH tends to precede the action of the

DH, and acts as the spatial frame of reference (potentially
supported by proprioceptive senses). For example, in writing,
the NDH is orienting the paper while the DH is writing.
In the context of behavioural biometrics, how do the rel-

ative movements between segments of the users body con-
tribute to biometric behaviour in contrast to absolute mea-
sures?We can sense the triangular reference frame that users
span out with their hands to their head, i.e. how they move
their hands relative to the body root position. Furthermore,
we investigate two manual tasks — grabbing (grab target
directly in hand) with a linear mapping and pointing (users
point with the controller to a remote target) – as an example
for a non-linear mapping. Particular features are:

• Spatial relation between left hand and body (head)
• Spatial relation between right hand and body (head)
• Spatial relation between DH and NDH

View Relation (Figure 1c)
User interactions are often guided by the visual stimuli avail-
able to the user. For example, eye-hand coordination de-
scribes the user’s spatial coordination of the their eye gaze
in relation to their hands. The eyes can direct the hands to
a target, visually identifying relevant information for the
hands to act [22, 28]. On the other hand, manual action of
the user may guide the visual, for example. when drawing a
line the eyes follow the hand’s interaction closely. In the con-
text of walking, the user visually inspects the space around
them to navigate through paths and avoid obstacles.
We aim to see whether users inhere distinct eye-to-body

relations. Users with less experience in manual tasks may
be subject to a more visual approach, where they want to
closely follow their interaction toward the target. Experi-
enced persons can guide themselves eyes-free and interact,
for example, simply by muscle memory; other users may be
somewhere in between. Therefore, as features we add:

• Spatial relation between eye gaze and head ray
• Spatial relation between eye gaze and controller ray
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World Reference & Target (Figure 1d)
User behaviour can be influenced by external factors of the
surrounding world. In VR/AR systems, digital information
and manipulation targets can be spatially located relative to
their view, body, or the surrounding world [6]. For instance,
in a manipulation task, the user reaches out and manipulates
an object in space, and how they reach may depend on each
user’s individual strategy. As users visually acquire the target
before manual action [22, 44], eye movements may similarly
contribute to user strategy. This related to understanding
biometric user behaviour in the context of Environmental
Awareness & Skills when acting toward objects relative in
physical space [19]. Based on this, we explore how spatial re-
lations between segments of the user and the target in world
space may be useful as biometric behaviour. In particular:
• Spatial relation between hand and target
• Spatial relation between eye gaze and target
• Spatial relation between head direction and target

4 STUDY
In this study we gather user motion data (head, hands, eyes)
in common VR interactions across two sessions. The goal is
to investigate and better understand user behaviour based
on various motion and assess their biometric quality.

Task and Study Design
Our goal was to find a few tasks that represent generic tasks
in VR. We selected four tasks with the help of a review of re-
lated work and current applications in VR. We now describe
the tasks. For details on the layout see Figure 2.
We conducted a within-subjects study design with re-

peated measures, over two sessions with at least 3 days in
between. The conditions are specific to each task.

Pointing (Figure 2a). Pointing at a target is a fundamental
task as most VR systems employ raycasting controllers. Here
a pointing tasks with the user hovering over a target with the
controller ray, at which its color changes from dark blue to
light blue for indicating this input state. A target selection is
valid if the trigger click and release events are both executed
in target hover state. After a valid selection, the selected
target is hidden and the next target is shown to the user.
• Target distance condition: close (2m) and far (4m)
• Distance between targets: 2m
• Target positions: 13
• Repetitions: 10
• Overall: 260 trials per session

Grabbing (Figure 2b). Grabbing is another in elemental task in
VR, where users can directly move their hand (represented by
the controller) to a target for selection. The selection finishes

when any part of the controller is within the target (feedback
given by target highlighting) and the user clicks and releases.
Two conditions are used: big and small targets.

For both pointing and grabbing tasks, arrangement of tar-
gets is based on the multi-directional tapping task described
in the ISO9241-9 standard [18] adapted to 13 targets based on
Teather and Stuerzlinger’s evaluation of 3D pointing [42, 43].
13 spherical targets are ordered in a circular arrangement
for each condition (2m / 4m distance to user position), and
users select them by alternating clockwise around the circle.
• Target size condition: small (0.15 cm) and big (0.30 cm)
• Distance between targets: 0.7m
• Target positions: 13
• Repetitions: 10
• Overall: 260 trials per session

Walking (Figure 2c). Users navigate through the virtual space
and physical walking is a prominent method to move in
the local space. In this context, gait has been shown as a
promising feature [40, 48]. We complement this work with a
perspective on body user motion.

In this task users are walking from a start to an end posi-
tion. The end position is visualised by an outline of a 2 meter
high door. When the user’s head position collides with the
layer, the task is finished and the next layer visualised. The
user turns around and walks to it. To fit the tasks within the
tracking range of the VIVE lighthouse, the path of the tasks
were designed accordingly. Two paths were chosen that each
include 4 straight line movements (2 short and 2 long lines).
The two paths were counterbalanced.
• Walk path condition: start left or straight (Figure 2c)
• Walk distance: short (1.7m) and long (2.4m)
• Repetitions: 20
• Overall: 40 trials per session

Typing (Figure 2d). Typing behaviour has been shown to
be a promising feature for mobile devices [10]. In VR, an
efficient typing method is tracked by hand-held raypointing
controllers [41], which we chose for our investigation.
We designed a typical typing task where the user sees

keyboard, target sentence, and textfield on a screen 3.75m
in front of the user. The keyboard was 4 × 1.6m large and
each key 0.4m2. 15 sentences were randomly selected from
MacKenzie and Soukoreff’s phrase sets [31]. The average
sentence lengthwas 25.8 letters (SD=3.14). The key is selected
when users hover over it and click (button_down event).
When users type a wrong letter, they can correct it. A trial
finishes when all letters were written. The user can make a
break or continue with the next by clicking the touchpad.
• Sentences: 15
• Letters per sentence: 25.8 (SD=3.14)
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Figure 2: Study design and a VR screenshot of the user’s perspective for each task, respectively.

Procedure
Each user performed two sessions with a pause in between
of at least 3 days. A session started with a brief introduction
by the experimenter and a demographic questionnaire. Then,
the user performed the tasks. An eye tracker calibration was
conducted before each task. The user performed blocks of
tasks (for example, 13 targets in succession), after which the
user had the option to take a break. On average, each session
of the study took approximately one hour.

Setup
The VR setup is shown in Figure 3. It is based on an HTCVive
(HMD, two controllers, optical tracking) which is equipped
with an additional eye tracker (Pupil Labs). The VR applica-
tion is implemented in C# in Unity 3D on a Windows 10 PC
(Intel Core i7-6700, 32GB RAM, NVIDIA GeForce 1080). The
eye tracker’s accuracy was measured in a 9-point accuracy
test at the study end (M=5.46◦, SD=9.36◦).

Data Log
During all tasks, the VR application logs position, rotation,
velocity and angular velocity of each device (HMD, con-
trollers) as well as the current gaze point and collision points
of the devices’ raycasts (HMD, hand controllers, gaze) related
to the area of interaction with a sample rate of 100Hz.

Participants
A total of 22 paid participants (4 female, 3 left-handed) took
part in the study. On average they were 26.05 years old
(SD: 3.81, range: 19–35 years) and had an average height
of 179.9 cm (SD: 8,66). They were either students from the
local university or employees with mixed background. 6 par-
ticipants wore glasses, 2 wore contact lenses and 14 had no
constraints regarding eye-sightedness. Regarding experience
in virtual reality on a scale from 1 (no experience) to 5 (very
experienced), users were little experienced (M: 2.1, SD: 0.86).

Figure 3: A user during the study with the VIVE VR headset.

Figure 4: Task completion times for each task and session.

5 DATA OVERVIEW
To understand the study data, we plot a few tasks. Figure
4 shows the task completion times for each task/session.
Across sessions, there is a learning behaviour. Note that
the typing task is accomplished when entering the whole
sentence, hence the longer times task completion times.
To further investigate the learning rate, we plotted task

completion times over the conditions of the study. Here
we focus on the pointing and grabbing tasks, as they have
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Figure 5: Learning rate for pointing and grabbing tasks.

Figure 6: Distances between head, (non) dominant hand.

comparable times. Note, that the other tasks showed similar
trends. Figure 5 shows increased task completion times for
the first trial. We also plotted the number of targets over time
and found an increased time for the first trial as evidence for
learning effects.

For body relations, we looked at the average distance that
users had between the main devices, i.e. head, dominant, and
non-dominant hand positions (Figure 6). It shows how users
exhibit different distances depending on the task. Moreover,
it highlights user characteristics such as arm length and body
height that are also relevant factors for body relations.

Considering target and view based relations, we focus on
the two manual tasks to assess the relations from the user to
the target (see Figure 7). First, as expected, users look closely
at the target to accomplish the task. In the grabbing task,
users on average look a bit further away from the target —
this is probably a result of (muscle) memory which supports
eyes free interaction. As users directly move their hands to
the targets, users can remember the spatial locations and
aim with less visual control. This is also evident in the target
to DH position distance which is substantially lower in the
grabbing task, i.e. users are closer to the target with their
hand (by design of the task).

Figure 7: View based features for two tasks.

Figure 8: Visual angle over task time.

Notably, the target to DHRay is at odds with the expecta-
tion, as we would expect users to point closely to the target.
We think this makes sense, as the ray position is averaged
over the time of the task and at the beginning of each task
users point quite far off the target location. Figure 8 shows
the relation of three visual distances over time. We used a
logarithmic scale to show the extreme distances that the
controller’s ray and the target span initially. It confirms that
the ray comes closer when finishing the task (averaging over
all tasks including fast users still resulted in a high distance).
The figure also shows how the user’s gaze comes closer to
the target. This is interesting for the grabbing task where
users visually acquire the target and the hand follows.

6 MODELLING AND EVALUATION METHOD
We train Random Forest and Support Vector Machine (SVM)
classifiers using the scikit-learn Machine Learning library
for Python. We use default values for the hyperparameters
(apart from trees=100 and C=1e4).

We filtered out the 3 left-handed users, the first two runs,
and first two targets to avoid learning effects. For task typing,
we filtered another user as the eye tracker did not work. For
pointing and grabbing: 11 targets × 8 runs × 2 conditions =
176 targets; for walking: 8 runs × 2 conditions × 2 conditions
= 32 targets; for typing: 13 targets; all per session per user.
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Model Features
We generate features by preprocessing the raw time series
data from all sensors. We split the data by session, task,
repetition, and action (e.g., by targets for the pointing task).
In addition, for each device (controllers, HMD), the virtual
reality system provides vectors for velocity, angular velocity,
and rotation, which we include as features, too.
To assess the categories from the body motion theories

introduced in our concept section, we provide the following
feature categories as listed in Table 1:
• Individual: these represent individual sensor types,
e.g., DH (Motion) stands for the controller in the dom-
inant hand. ’Motion’ denotes the relative movement
of the device, derived by the meter length of the path
that the device moved from start to end of the task.
• Move+Stabilise: This category combines two Motion
types into one feature set. It is used to mutually inves-
tigate effects of motion between body segments.
• Distance: In this category, the Euclidean distance is
used between two positions in the 3D virtual space.
• Target/Distance: These feature sets use the Euclidean
distance from the device to the target position. For the
walking task, the center of the door is the target.
• Target (visual angle): The visual angle is computed
between the target position and the position of another
device; the metric is degrees of visual angle.
• View (visual angle): This category includes all visual
angle measures between user-related features, such as
the angle between the ray span between the forward
ray of the HMD and the user’s eye gaze direction.
• All (category): Includes all features of one category.
• All: Includes all features of all categories.

For each of the resulting feature subseries we compute
the mean, min, max, and standard deviation of each sensor.
For example, we get the four value types of the head motion
during the time frame in which participant 1 aimed at the 12
o’clock target in her first repetition of the pointing task in
her first session. This means that each line in Table 1 includes
four data types that describe the feature or feature set.

These values define the feature vector of one such action.
We use these feature vectors as training instances. The label
for each vector is given by the corresponding participant ID.

Evaluation
We test several feature sets motivated by interesting compar-
isons, such as the relative importance of different tracking
devices (e.g., controllers, headset, gaze). In addition, we re-
port on optimised feature sets per task. These optimised
sets are found with a wrapper-based feature selection ap-
proach [24], which uses a greedy search through the space of

feature combinations based on the performance of the actual
classifier. We refer the reader to the related work for details.
We train the model on the data from the first session and
test on the data from the second session. This corresponds
to a scenario in which user enrolment happens once on one
day and verification happens on other days.

Identification
In the identification scenario, we train a Random Forest clas-
sifier on the described training instances and labels. The
resulting model makes a prediction for a new feature vector
based on interactions which participant pi from the set of
all participants P performed. This corresponds to use cases
in which the system is supposed to identify a user from a
set of known users. We report the accuracy here (F1 scores
available in supplementary material).

Identification vs. Group Size
Of interest is also the influence of the size of the user group
from which to identify the interacting user. In general, the
classification problem becomes harder if there are more peo-
ple to distinguish, since, e.g., behaviour that might be char-
acteristic among five users might not be unique among ten.

Thus, we evaluate classification performance across group
sizes as follows: For each group size д (from 2 to 19), we
draw 100 random subsets of д participants from the set of
all participants. For each such draw, we then evaluate the
classifier on this subset of participants as described before.
We report the average performance across the 100 draws.

Metric
We report classification accuracy – the number of correct
classification decisions divided by the total number of deci-
sion (i.e. number of test cases). We report this performance
measure since it is commonly used and easy to interpret.
Accuracy is adequate in all our evaluation schemes since we
always have balanced test sets (i.e. same number of test cases
for each user/class). Thus, results can be compared to the
baseline of guessing: 1 out of 19 users =5.26% accuracy.

7 RESULTS
Overall, the best body motion to identify and authenticate
users are head motions, and distances between the devices.
Table 1 shows the results for each feature and combination.

Identification
Overall we reach accuracies of about 40% to identify users
across sessions, for each task. In the following, we report on
individual aspects of the results.

Relative distances are most accurate overall: Overall the set
of features of relative distances between DH, NDH, and Head
showed the highest accuracy to identify users. This shows
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Point Grab Walk Type
Guessing 5.26 5.26 5.26 5.56
Individual
DH (Motion) 17.11 13.97 13.32 12.82
DH (Velocity) 21.59 18.36 14.97 21.79
DH (AngVel) 21.08 24.22 14.31 18.8
DH (Rotation) 20.07 26.44 22.04 25.64
DH (All) 29.25 30.08 22.37 33.33
NDH (Motion) 8.76 14 17.43 14.96
NDH (Velocity) 12.05 18.96 16.94 18.8
NDH (AngVel) 17.17 15.85 15.62 15.81
NDH (Rotation) 26.88 23.33 12.01 25.21
NDH (All) 22.22 25.57 22.7 31.2
Head (Motion) 12.59 14.14 19.08 13.68
Head (Velocity) 17.34 17.82 22.04 28.21
Head (AngVel) 21.62 21.68 20.39 27.78
Head (Rotation) 32.21 27.81 28.12 34.62
Head (All) 33.67 31.25* 39.47 37.61
All 33.34 27.03 39.31 38.03
Move+Stabilise
DH, NDH 17.55 18.27 19.24 20.09
DH, Head 23.44 19.8 20.39 24.79
NDH, Head 13.04 15.76 22.53 22.65
DH, NDH, Head 23.03 18 24.84 30.77
All 22.19 18.57 24.84 24.79
Distance
DH,NDH 18.09 10.53 12.66 18.38
DH,Head 22.79 10.44 25 25.64
NDH, Head 22.22 13.28 20.72 10.26
DH,Head; NDH,Head 29.04 10.94 33.88 35.04
All 41.39* 14.86 43.42* 44.44*
Target/Distance
Target, DH 10.89 12.05 16.61 8.12
Target, NDH 11.84 13.19 11.51 11.11
Target, Head 7.24 9.15 25 7.69
All 20.96 19.29 32.07 14.53
Target (viual angle)
Target, HMDRay 6.13 7.72 8.72 8.97
Target, Gaze 10.11 11.27 10.36 9.4
Target, DHRay 9.75 13.1 12.01 19.23
Target, NDHRay 10.11 9.03 15.79 11.54
All 15.85 21.32 15.3 20.09
View
HMDRay, Gaze 7.33 7.39 8.55 6.84
HMDRay, DHRay 13.04 11.63 14.47 14.53
HMDRay, DHPos 15.67 11.27 13.49 18.38
HMDRay, NDHRay 09.09 13.82 15.79 19.23
HMDRay, NDHPos 16.81 17.34 13.32 22.22
Gaze, DHRay 9.84 8.13 9.21 8.97
Gaze, DHPos 10.18 7.98 8.47 8.33
Gaze, NDHRay 9.51 9.63 9.05 5.98
Gaze, NDHPos 7 7.18 7.57 9.4
All 21.35 30.59 22.53 19.66
All 26.64 27.3 39.64 44.44

Table 1: Classification accuracy results of features and
feature sets of body motion categories (* denote best
per task; bold and cursive denote category 1st and 2nd
best, respectively).

that proprioception indicates promising features to identify
users which is aligned with the task-specific analysis of body
relations shown in Figure 6 (except for grabbing, where the
relations consistently received low scores).
Head motion is second accurate overall: As a single set of

features from theHMD, headmotion consistently scored over
30% accuracy and represents a practical source of motion
information if controllers are not available.

Pointing is better than grabbing for handmovement: In grab-
bing, users have to move to the same absolute positions, thus
hand movements resulted in less accurate results. In compar-
ison, pointing tasks allow users to exhibit more freedom in
the manual movement.

Head movement is suitable for walking tasks: We find that
head movement can better describe individual user walking
than hand movements. This confirms prior work that found
gait is well modelled using headwear [40].
View relations are similarly accurate as head motion for

grabbing tasks: In the grabbing task, all view-based feature
sets (30.59%) reached almost the accuracy of all head motion
features (31.25%). This can be explained by the design of the
task, where the targets were spread across a large area in
front of the user, necessitating frequent changes of view.

Best Feature Sets. We used the described feature selection
algorithm for finding best combinations among all features
per task. To do so, we separated each individual category fea-
ture into X/Y/Z. Furthermore, we include relations between
DHPos, DHRay, NDHPos and NDHRay. Distance and View
feature categories are unchanged.

The resulting feature sets as presented in Table 2 achieved
a better accuracy than our systematic tests (cf. Table 1), thus
showing that further combinations can improve the system.
The largest improvement is for the pointing task from 41.39%
to 63.55%. This feature set integrates many body relations
of Distance and View, thus indicating that proprioception
and view based positions provide strong features. The same
is true for Grabbing where less features were found to be
relevant – yet distance and visual angle are among them.

For walking, the features are all related to the user’s head
motion, aligning with the understanding that head move-
ment is a good identifier of gait. The View-based properties
span large visual angles between the HMD forward vector
and the user’s hands (usually held waist down at walking).
Here we think the maximum viewing angles between head
and controllers are more distinctly pronounced than their
respective distances or positions, and selected as features.

For typing, an increased accuracy is achieved by combin-
ing Head, Distance, and View-based features. This correlates
with the individual accuracy results as reported in Table 1.
However, the feature set optimisation algorithm found a
better combination than our systematic approach.
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Figure 9: Identification accuracy across user group sizes, for each task.

Pointing (63.55%) Grabbing (45.84%)
max(DH AngVel), avg(NDH AngVel)
avg(DH Rotation), avg(Dist NDH, HEAD),
max(Distance NDH, HEAD), avg(View DHRay, NDHPos)
max(Distance DH, NDH), avg(View HMDRay, NDHPos)
avg(Distance DH, HMD),
min(View HMDRay, DHPos),
max(View HMDRay, DHPos),
avg(View HMDRay, DH Pos)

Walking (49.67%) Typing (54.27%)
min(Head Vel) avg(NDH Rotation)
max(Head AngVel) avg(Head Rotation)
max(Distance DH, HEAD) max(Distance DH Head)
max(View HMDRay, NDHRay) max(View DHRay, DHPos)
min(View HMDRay, NDHPos) avg(View Gaze, NDHPos)
avg(View HMDRay, NDHPos)

Table 2: Feature optimization results.

Identification vs. Group Size. We plotted the identification
accuracy across user group results in Figure 9. We used each
of the combined feature sets per category (’all’ in Table 1),
and additionally the best feature group found with the fea-
ture selection algorithm. Over all tasks, the diagrams show
that with increasing group size, the accuracy decreases at
a logarithmic rate. For the pointing task, the best feature
set (pink line) decreases at a substantially lower rate and
remains above 60%, whereas some of the other feature sets
decrease to under 30% of user identification. Similarly, the
best feature set also achieves best scores in the grabbing task,
although the rate of decrease is similar to other feature sets.
In the walking and typing tasks, three feature sets are on a
similar top score level: Individual All, Distance All, and the
best set found with the feature selection algorithm.

8 DISCUSSION
Our main contribution is the detailed analysis on user iden-
tification accuracy of a plethora of body relations, ranging
from motion, distances between segments, and how users
visually perceive relations between gaze, head direction, and
hand positions. Our work allows the relative biometric value

of these body features to be understood, pointing to what
feature is more unique among users. This leads to a better
understanding of how body motion, proprioception, and in-
ternal/external reference points to the user’s body are related
to each other. Researchers can assess and compare these fea-
tures depending on which part may be of relevance to their
future work. We also want to highlight the main insights:

Body distances aremost accurate: The higher accuracy
of body relations and distances suggests that proprioception
[29, 34] and hand coordination [16] may be stronger biomet-
rics than individual features, as focused on in prior work.
Interestingly, one could question whether this can be attrib-
uted to absolute biometrics such as arm and body size, but
that does not explain why features that consider eye gaze
information are so prominent in our feature optimization
results (Table 2). It indicates that the biometric value also
arises from how users coordinate aspects of the visual and
manual abilities, which demands further study.

Pointing is more accurate than grabbing: in pointing,
users can exhibit more diverse movement. In grabbing, all
users have to move their hand to the same targets, thus
creating less individual movement. In conclusion, pointing
is more suitable as a biometric.

The dominant hand provides strong features: When
pointing, users are free to, e.g., move their hand in direction
of the target, or alternatively to make small wrist rotations.
These strategies lead tomore individual features, and support
recent results on dominant hand motion authentication [25].

Our modelling approach reached a maximum of 63% ac-
curacy, which may seem low for practical use. At the same
time, our work provides a first fundamental investigation
of these biometric features in the VR context. We show that
accuracy improves with fewer users (Figure 9): user identi-
fication with our used model can be particularly useful for
small user groups such as families or companies, for example,
to realise some user adaptation of the system.

For more users, we see several ways to improve the mod-
elling. First, we could evaluate further classifiers, features,
and variations and combinations thereof. A more substantial
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extension could investigate other treatments of the temporal
aspect of the data, including, for example, extracting fea-
tures for rolling windows over time instead of aggregation
per action. Moreover, we could investigate the frequency
domain of features instead of the time domain. Finally, con-
sidering that our identification models vastly outperform
chance level by about a factor of ten, we could investigate
potential improvements via aggregation of evidence over
time (for example, decision after observing multiple actions).
We thus see interesting opportunities for investigating these
optimisations in future work.
Beyond accuracy, we contribute to the understanding of

human motion for user identification. Our concept section
and Figure 1 provide a systematic overview of how previous
work has considered motion and derives relations between
body segments. The list of results in Table 1 promotes dis-
cussion on the different body motions and how suitable they
are as predictors for individual human motion. Moreover it
characterizes 4 fundamental interaction tasks with regards to
whichmotion features are valuable to identify users, showing
overall good predictors across tasks (for example, distance
or head), as well as which specific combinations scored high-
est (Table 1). Depending on available sensors and tasks, a
developer can use our results to make an informed decision.
Our results are based on a user study, which was rigor-

ously designed but should be considered carefully with the
following limitations. First, the tasks were designed to repre-
sent typical VR interactions. This may naturally involve bias
factors. In walking to a target, users may adjust stride length.
Furthermore, users may get tired from repetitive manual
tasks, such as interacting with a design application where
users are continuously drawing or a game where users point
to shoot. These are factors common in everyday interactions
and we intentionally did not control these factors but call
for future studies to better understand potential bias factors.
The results may also be affected by our choice of users.

Authentication systems benefit from testing with more par-
ticipants than the 19 we had. This was sufficient to show that
the accuracy stagnated with an increasing number of users
(Figure 9), but testing with more users is relevant to really
assess the potential for an authentication system. Addition-
ally, features that involve body relations may be affected by
physical attributes such as the user height and arm length.
However, that does not explain why features that consider
visual information are so prominent in our feature optimiza-
tion results (Table 2). It indicates that the biometric value
also arises from how users coordinate aspects of the visual
and manual abilities, which demands further study. Finally,
our user set does not balance gender well. We expect that
more diversity might increase user identification accuracy.

9 CONCLUSION
Our work provides an exploration of a broad range of body
relations, that points to the possibility for continuously iden-
tifying and authenticating users in current VR systems and,
hence, overcoming the limitations of explicit authentication
mechanisms [15]. Features such as head motion and dis-
tances between head and the controllers, which have shown
higher recognition accuracy than other features, can be in-
tegrated right now as a soft biometric identifier to enhance
the default authentication method. In the short-term future,
further explorations into motion relations beyond hands and
head may reveal better features. Also more advanced ma-
chine learning methods, such as deep learning, may make
the system more accurate. In the long run, motion tracking
methods may be able to capture whole body motion as well
as the space around the user in realtime and exploit this for
user identification and general user behavioural analysis.
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