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Figure 1. We investigate interruptions of head-mounted display (HMD) users by people not wearing an HMD (bystanders). At the focus of our work we
explore whether bystanders can identify task switches of the HMD user and, hence, opportune moments for interruptions. In particular, we compare 5
tasks in AR (top) and VR (bottom) : authentication (A), reading (B), manipulation (C), typing (D), and watching a video (E).

ABSTRACT
Head-mounted displays (HMDs) are being used for VR and
AR applications and increasingly permeate our everyday life.
At the same time, a detailed understanding of interruptions
in settings where people wearing an HMD (HMD user) and
people not wearing an HMD (bystander) is missing. We in-
vestigate (a) whether bystanders are capable of identifying
when HMD users switch tasks by observing their gestures, and
hence exploit opportune moments for interruptions, and (b)
which strategies bystanders employ. In a lab study (N=64) we
found that bystanders are able to successfully identify both task
switches (83%) and tasks (77%) within only a few seconds of
the task switch. Furthermore, we identified interruption strate-
gies of bystanders. From our results we derive implications
meant to support designers and practitioners in building HMD
applications that are used in a co-located collaborative setting.
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INTRODUCTION
Augmented and Virtual Reality (AVR) is finding its way into
many application areas, including but not limited to archi-
tecture and automotive development [16, 32, 44]. As users
interact in AVR by means of head-mounted displays (HMDs),
they become widely unaware of the real world (RW). This cre-
ates a challenge in situations, where people in the real-world
(bystanders) need to interrupt the user wearing the HMD –
similar to situations in a workspace where colleagues engage
in brief discussions or ask each other for advice. In particular,
the interruption not only impacts on the current task and perfor-
mance, but it also leads to a loss of immersion and presence1.

Building on research in the subfield of interruptions within
HCI we investigate, whether real world bystanders can rec-
ognize what the HMD (AR vs. VR) user is currently doing
without the aid of technology. We are interested in whether
or not humans can tell from observing the behaviour of an
HMD user – such as position, interaction gestures, and head
movements – when they are switching between two tasks.
This knowledge is valuable, as prior research on interruptions
showed that changes in tasks represent an opportune moment
for reducing interruption costs [38, 68]. This presents a chance
for bystanders to approach an HMD user while minimizing any
negative effect of the interruption on their level of immersion
and presence [63, 79] and, ultimately, their productivity.

1Immersion and presence are established terms for measuring the
quality of IVR experiences. Immersion refers to an objective evalua-
tion of the hardware capabilities (e.g., frame rate, field of view) [63,
66], whereas presence describes an individual evaluation of the AVR
experience [46, 63, 66].
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We conducted a lab study (N=64), revealing that bystanders
are indeed able to recognize task switches (83%) and tasks
(77%) by observing HMD users’ behaviours. On average it
took them 5.02 s (SD=2.8) to recognize a task switch and
7 s (SD=1.6) to identify a task. Furthermore, we discovered
strategies observers employ to identify task switches / tasks.

To our knowledge, this paper is first to (1) explore users’ strate-
gies for interrupting an HMD user and to (2) investigate ob-
servations of AR vs VR users as means to inform opportune
moments for interruption. We believe the findings of this work
to be useful for researchers and practitioners who are design-
ing for the use of HMDs in settings where people in the real
world are working together with people in AVR.

BACKGROUND AND RELATED WORK
We draw from several strand of prior work. presence and
immersion, observing gestures, and interruptions.

Interaction between HMD Users and Bystanders
Prior work mainly focused on interaction between users in
mixed realities with a common collaborative goal [6, 45],
rather than evaluating how a bystander in the real world
can interrupt an HMD user. Gugenheimer et al. directed the
focus onto bystanders by including them in the VR game-
play through a tablet device [24] and a face display [25, 48],
mounted onto the HMD. They found this type of involvement
to improve social interaction and acceptance between VR user
and RW bystander. However, their experiments were centred
around a common gaming theme in which bystanders were
exposed to technical devices (tablet vs. HMD face-display).

Prior work has reviewed intrinsic interruptions by displaying
virtual content to the AVR user, in form of projections of the
bystander [51] and through notifications [21]. Although, these
are valid approaches, the aim of our work is to empower the
bystander to make an informed decision when to interrupt or
not, such that they can observe the task and judge it against
their own urgency. This is similar to a real world scenario
where people carefully decide when to interrupt, based on the
intensity of a conversation and their own needs.

In contrast to prior work, we evaluate how a real world by-
stander can interact with an HMD user, without technological
aids and a common collaborative goal. As VR and AR pro-
vide different levels of immersion and presence in the real and
virtual world, with varying capabilities for gesture interaction
[20], it is necessary to understand whether the technology has
an effect on how bystanders interrupt in a co-located collab-
orative setting. Our assumption is that bystanders feel more
comfortable to interrupt an AR user only partially immersed
in the virtual world but fully aware of the real world and thus,
is visually aware of bystanders’ location and possible motion.

When and How to Interrupt?
Prior research repeatedly confirmed that interruptions nega-
tively affect productivity and performance [36, 50]. However,
they are also an integral part of teamwork and necessary for
successful collaborations between the person being interrupted
and the initiator [54, 60]. Thus, research in this area has been
trying to find balanced solutions for enabling interruptions,
whilst minimizing the negative effect on users.

A well-known approach is to support interruptions during
task switches, when attention shifts from one task to another.
Prior research found this to be an opportune moment in which
interruption cost is reduced [38, 52, 68]. Additionally, low
levels of mental workload have been used as an identifier for
appropriate interruption times [2, 37].

Several solutions have been discussed on how to recognize
perfect moments for interruptions, such as task switches. The
majority focused on internal, mainly posteriori approaches,
such as observing physical activity indices through machine
learning (e.g., key strokes, motion detector) [5, 17, 18, 36] and
their visualization (e.g., traffic light system [82]).

Horowitz et al. [33] inferred interruptibility from recording
external factors (e.g., phone being used, door shut), shifting
the focus from only enabling computers to interrupt humans
(e.g., PC notifications) to humans interrupting humans.

Without the aid of technology, humans rely on social con-
ventions to judge whether interrupting another person is ap-
propriate by observing body orientation, head direction, or
gaze [28, 55]. Avrahami et al. reviewed human estimation of
interruptibility, investigating self- and bystander estimation
[4]. Estimation was mainly based on contextual information
(e.g., social engagement, phone, door closed/open). Rivera et
al. found that for a human to judge when to best interrupt, they
have to know the task and person beforehand [59].

An HMD user can only partially see the real world and, there-
fore, cannot intentionally communicate their availability. Fur-
thermore, the work setup, whereby the AVR user is wearing
an HMD, may be compared to the notion of having the doors
closed in an office setting, indicating that you are shutting
yourself out from the outside world [35], thus, creating a diffi-
cult environment for a bystander to infer the appropriateness
of interruptions based on social clues.

Although observing physical activity, such as key strokes, to
indicate task switches may be applicable to AVR [71], we
argue that it is crucial for the successful interaction between
HMD user and bystander if this can be achieved without tech-
nology aid but by human judgement only. On one hand, HMDs
are becoming self-contained and opportunities to visualize ap-
propriate moments for interruption on a screen nearby may
be unavailable. On the other hand, it would enable natural
interaction between HMD user and bystander, reducing the
need for training on computer-aided visualizations showing
interruptibility (traffic light system).

Observability of Gestures
Gestures are an integral part of human communication and
have early on been adopted by HCI. Of particular interest
is the classification of gestures by Kendon and Wexelblatt
who suggest to differentiate between ‘conversational gestures’
and ‘gesture languages’ [40, 78]. The latter describes gestures
not natural to our technology-independent conversation but
rather movements, enforced to interact with certain interfaces.
Gesture interaction in AVR mainly falls into this category
unless explicitly used for social interactions.



Kurtenbach et al. [43] define gestures as communication tool.
In contrast, we investigate the idea that controller clicks and
movements in a 360 degree AVR interface are also forms
of communication. Rather than focusing on the intentional
gesture communication with an AVR user [72], we investigate
the involuntary communication to real-world bystanders.

Prior work pointed out that bystanders may indeed act as
unintentional communication partners and that they are able to
understand gestures by observation. Kendon et al. investigated
what type of data can be gathered from gesture observation
(e.g., watching someone give a talk, replaying a video of an
interaction) and found that, even without speech, bystanders
are able to understand the context of an action, emotional state
of the speaker, and individual tasks [23, 41]. Heath and Luff
[29] go a step further and suggest that controlled gestures may
support co-present collaboration. Also, ‘gesture languages’ are
specifically designed to be easily learned or discovered [10].

We argue that for collaboration with HMDs, gestures can
never be for the system only, as real world bystanders can be
assumed to watch, whether it is intentionally or unintention-
ally. Intentional bystanders, who want to collaborate with the
HMD user, can benefit from gesture cues for the purpose of
interruptions. Unintentional bystanders, may benefit by cre-
ating awareness around the meaning of the system gestures
to support a co-located collaborative environment. Montero
et al. [53] reviewed social acceptability of gestures and found
that bystanders who cannot interpret user gestures, associate
negative feelings with the user/device.

Mid-air gestures are widely used for interaction in other do-
mains, such as public displays and televisions [74, 77]. Yet,
research on bystanders observing mid-air gestures as well as
the advantages and disadvantages of this is still scarce, [3, 8,
73, 75], particularly in the context of AVR. George et al. [22]
reviewed how bystanders observed and interpreted gestures
executed in the context of authentication in VR with the goal
to identify passwords. Denning et al. [14] investigated the
interest of bystanders in AR interactions and found that they
were concerned about being filmed by the user’s device rather
than concerned with the interaction itself.

We build upon prior research by investigating to which extent
HMD interaction gestures can be observed by bystanders and
whether it is possible to understand the HMD ‘gesture lan-
guage’ to a point where it is possible to identify task switches.
We believe this knowledge to be a useful starting point for
researchers designing approaches to minimize negative influ-
ences resulting from interruptions in AVR.

Summary
From related work we learn that interruptions during task
switches can reduce the cost for interruptions. However, it
is unclear whether observing HMD users’ gestures to iden-
tify task switches, leads to the same results. Understanding
(1) whether users can identify task switches (2) strategies by-
standers employ to do so and (3) the effect technology (AR vs.
VR) has on these results, is valuable. This knowledge can be
taken into account when designing novel UIs in AVR in a way
such that they support identifying task switches.

IDENTIFYING COMMON TASKS IN AVR
To generalize our results, we identified five common tasks in
AVR with varying interactions (see below). They are based
on two streams of analyses: Firstly, we completed a literature
review of AVR papers and summarized the most common tasks
and their implementation. Secondly, we reviewed existing
AVR use cases from the industry. We then transformed the
tasks from the use cases to general tasks for our study 2.

Watch
A frequently occurring, passive AVR interaction is the replay
of simulations, prominent in automotive [76] and architecture
[67] settings. This may be compared to the general task of
watching a movie (e.g. fast forward simulation).

Type
Although typing may be performed better in the real word, the
task switching cost and loss of presence and immersion such
a change introduces, motivated us to include a writing task.
Note taking, e.g., during collaborative mechanical prototyping
[81], is already a typical AVR application.

Read
Reading instructions, for example, to understand client require-
ments while creating landscapes/buildings, is already a task
that is partially being completed in AVR [12, 7].

Authenticate
The wearer of an HMD has to authenticate to use the HMD or
individual apps in AVR. Although currently not common, we
included this task as it is probably the most frequently used
task on protected mobile devices and HMDs are envisioned to
be detached ubiquitous [22, 80].

Manipulate
HMD users manipulate 3D objects in AVR (scaling, rotating
and dragging) during prototyping [19, 32].

An overview and detailed description of the developed de-
signs for the above mentioned tasks is provided in Table 1.
We designed them so as to require a similar amount of time
to be solved across tasks and HMDs. Due to the interactive
capabilities of the two HMDs, the designs differ slightly.

STUDY
We conducted a lab study to explore how bystanders in the
real world interrupt an HMD user and how easily they could
observe their interaction gestures. Studies adhered to ethical
research standards within our institution.

Our research was guided by the following hypotheses:

RQ1 How do bystanders interrupt HMD users?
RQ2 Are bystanders capable of identifying opportune mo-

ments for interrupting an HMD user?

[H1] Bystanders are able to identify switches between tasks
when observing the behaviour of an HMD user.

[H2] Bystanders can identify the type of individual tasks by
observing gestures of the HMD user.

2We do not claim that these are all the available tasks in AVR. How-
ever, they cover a vast amount of possible gestures.



Table 1. We identified five common tasks from prior work and industry. The designs of the tasks for our study were completed in close alignment with
these examples. Figure 1 shows screenshots of the virtual tasks.

Task Design of Tasks for Study Examples for VR Examples for AR
Watch Users watched a short movie on a virtual canvas

(4:3, 1.5 m distance to screen). Interactive elements
change colour upon activation. Task was completed
as the movie ended.

Traffic simulation for driving [76], video
for visualizing travelling destination
[26].

Replay of demos [42], video
conference [47], demos of
architecture prototypes [67]

Type Users had to write a short pre-defined text using a
xylophone -like virtual keyboard, where buttons are
pressed by means of ‘drumsticks’ attached to the
controllers. The text was displayed on top of the
keyboard

Keyboard is presented in different lev-
els of realism [51], Xylophone-like key-
board that is operated with a laserbeam
from the controller [1].

Envisioning typing with
point and click on virtual
keybaord [27, 58],

Read The user had to read a short text, presented on a pane
floating in mid-air. After reading the text, users press
‘OK’.

Varying reading in VR between fixed
position and always in field of view [7,
12, 61],

hide and show annotations
in AR glasses [11, 39, 62,
65]

Authenticate User had to enter a given PIN correctly and submit
it.

PIN entry with laserbeam from con-
troller [22, 80] and from HMD [70], ran-
domized PIN entry with touch from con-
troller [64]

Entering PIN through point
and click on PIN pad [34,
58]

Manipulate The user had to rotate, scale and move the 3D object
of a house. Each interaction was performed once.

Inclusion of RW 3D objects manipu-
lated with controller [51], Selection of
3D objects through controller or gaze
laser beam[49]

3D production assembly
[19, 32, 57].

Study Design

Independent Variables
To evaluate how bystanders interrupt an HMD user and un-
derstand how easily different tasks could be observed, we
introduced five types of tasks (tasktypes) explained in the
previous section. The independent, counterbalanced, within-
subjects variable tasktypes has five conditions: taskauth, taskread,
taskwatch, taskman and taskwrite (Figure 1). We also differentiate
between two types of HMDs, namely AR and VR (between
subjects variable).

The study was separated into two parts, whereby the second
part had two rounds. In the first part, participants had to in-
terrupt an HMD user. In the second part, participants had to
recognize switches between tasks and identify the type of
tasks. This was done in two rounds (roundone and roundtwo),
to analyse learning effects.

Dependent Variables
To investigate interruption behaviour, we captured two types
of data:

[Quantitative Data] We measured the time it took participants
to regognize a task swith (rec_timetaskswitch) and to identify the
task the user switched to (rec_timetask). To do so, we measured
the time from the start of a new task by the HMD user until
participants indicated to have recognized a task switch or
identified the task. To measure the time, participants had to
tell the experimenter when they identified a task / task switch.
The experimenter used a tablet app, on which he pressed a
button upon the notification by the participant. We deliberately
decided to give the tablet to the experimenter rather than the
bystander to avoid disctraction.

In addition, we counted all correct (guesscorrect) and incorrect
guesses (guesswrong), that is the total number of times they
said to have noticed the identity of a task (i.e. the total number

of button presses on the tablet app). A guess is correct when
the task was correctly identified while the HMD user was per-
forming it. Incorrect guesses are cases in which participants
indicated to have observed a task which was not the one per-
fomed by the HMD user. This also includes missed guesses,
i.e. when a task was performed by the HMD user but nothing
was voiced by the bystander.

Note, that the number of guesses can be unlimited. To calculate
the success rate, we only consider the first button press per
task (taskcorrect). In addition, we also calculate the error rate
(taskwrong), which is the sum of incorrectly identified tasks,
including tasks were nothing was voiced.

[Qualitative Data] Participants completed (a) a demographic
questionnaire and (b) a questionnaire at the end of both part
I and II that assessed the effects the interruption had on both
participants as well as the difficulty and confidence to observe
tasks as perceived by the bystander. Feedback was gathered
through a semi-structured interview.

Apparatus
We used an HTC Vive headset with accessories (Figure 2)
and a Holo Lens on an i7-6700K PC with an Nvidia GTX980
graphics card as hardware. The VR prototype was created
using Unity 3D with support from the Valve SteamVR plu-
gin. To capture observer input, a customized web app ran on
the experimenter’s iPad Air. This was synchronized with the
virtual environments. The app records timings.

Procedure
Participants were recruited in pairs of two. They knew each
other and were of equal hierarchy - same level of status rather
than supervisor and junior. We refer to the technology under
the general term HMD, as the procedure was the same for AR
and VR.



When	is	the	best	
time	to	interrupt?	
What	is	he	doing?

Figure 2. Real world view of the HMD user with an HTC Vive, con-
trollers and headphones. The bystander, interrupts the HMD user, iden-
tifies tasks and task switches.

Two experimenters conducted the study. One (E1) always
stayed with the VR user while the second one (E2) attended
to the bystander. We used two rooms, as the individual partic-
ipants had different tasks and thus needed separate introduc-
tions. The main part of the study was completed in the main
room (MR; Figure 2) where the HMD and cameras to record
the study were setup. The second room (R2) was smaller and
equipped with a table and a video camera. In general, both
participants stayed in the main room and the bystander only
left the second room to complete questionnaires.

Introduction
As participants arrived at the lab, we first introduced them to
the topic of the study. In particular, they were then told that
they had to take on the role of co-located architects, working
together on a project, yet were not told about the interruptions.
This setting was chosen based on related work that highlighted
a trend in the architecture [9, 15, 32] and automotive industry,
where HMDs are already in use (cf. Table 1). We showed
them the video cameras and asked them to complete a consent
form. After that they were given the opportunity to familiarize
themselves with the HMD. In particular, they completed a
training, which included working on a number of tasks, closely
resembling the ones we would later use in the observation
study. Participants were taking turns to complete the initial
training and the demographics questionnaire in a separate
room. We then randomly assigned one participant to be the
HMD user and the other one to be the bystander.

The main part of the study was split into two parts, whereby
the second part consisted of two rounds.

Part I
The bystander left the main room with E2. In R2, they were
told that their task was to observe their partner while interact-
ing with the HMD and to interrupt them whenever they wanted
to. In the meanwhile, E1 told the HMD user to complete a
set of 5 tasks 1, while their partner would watch. Once E2 re-
1Note, it was communicated to both participants that tasks are random
and could appear once or multiple times.

turned with the bystander into MR, the session started and the
HMD user put on the HMD. The bystander was first guided
through the room and was then asked to choose a spot any-
where in the room to interrupt the AVR user. The session was
completed as soon as the bystander interrupted the HMD user.
Subsequently, E2 left the room with the bystander to complete
a follow-up questionnaire to capture subjective feedback on
the interruption. Similarly, E1 asked the HMD user to fill out
a questionnaire to collect feedback on how the interruption as
perceived. The aim of the first part was to understand interrup-
tion strategies, why participants chose a specific point in time,
and perception of the interruption.

After completing the questionnaires, participants were pro-
vided with instructions for Part II. The HMD user was again
asked to complete 5 tasks in VR. The bystander was told to
observe the HMD user’s gestures and communicate when they
notice task switches and the identity of the tasks. This is the
first time in the study that they were familiarized with the term
’task switch’.

Part II
Once experimenters and participants were united again in MR,
the HMD user put on the HMD (roundone). E1 recorded by-
standers’ feedback on task switches and task identities on the
tablet. This round finished when all 5 tasks were completed by
the HMD user1. Then, E2 went to R2 with the bystander for
a follow-up structured interview, where they state their confi-
dence in their recognized tasks and task switches and answer
additional questions on observation strategies. Afterwards, we
repeated this part (roundtwo).

Conclusion
After the main parts, both experimenters and participants sat to-
gether in MR to have a semi-structured interview on the study
and their experience as a pair. Participants were compensated
with an Amazon voucher. Each session lasted approximately
45 minutes.

Participants
Overall, we had 62 participants (29 females, avg. age = 27,
SD = 4.4), 30 had corrected to normal eyesight, and one stated
a red-green colour blindness. Participants rated their previous
experience with VR with MD=3 and for AR it was MD=1 (7
point likert scale: 1=very bad, 7=very good) (cf. Table 6).

Limitations
We recruited via a university mailing list. Hence, the majority
of participants were young but had little HMD experience. Yet,
they represent the target group we are designing for. The study
was completed in the western culture with high-end HMDs.
Thus, findings may only be applicable to users with a similar
background and setting.

RESULTS
Results are based on log files from the tablet app, question-
naires, a semi-structured interview and video captures. Note,
numbers are aggregated across both AR and VR condition,
unless there were significant differences that are specifically
pointed out.
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Figure 3. Total count of recognitions and guesses for AR vs. VR for identifying tasktypes.

Quantitative Findings
Participant provided 378 guesses (total button presses) while
they were observing 320 tasks (32×2×5).

Interruptions
First we looked at the time it took participants to interrupt the
user and the employed strategies. A Welch ANOVA showed
that technology had a significant effect on the time it took
observers to interrupt, (F1,27 = 16.33, p < 0.001). The time it
took the bystander to interrupt the VR user (Mean = 57.18,
SD = 39.57) was significantly longer than for the AR user
(Mean = 17.13, SD = 13.83). 66% of bystanders naturally
interrupted while the AVR user was completing a task rather
than in-between tasks.

The vast majority of bystanders decided to speak to the AVR
user to interrupt (62.5%). The others used the following strate-
gies: 18.8% speak & touch, 9.4% touch, 3.1% wave (AR only).
6.3% did not interrupt (VR only). In the semi-structured inter-
view, we questioned these bystanders on the reason for their
behaviour, considering that the instruction they were given
for Part I was specifically to interrupt the HMD user. They re-
vealed to have felt uncomfortable about interrupting someone
who is deeply engaged with another device.

Recognition Accuracy and Time for Task Switches
First, VR participants correctly identified 107/125 task
switches (16×2×4, upon review of the data in a box-plot
diagram, we removed 3 outliers), resulting in a 86% success
rate (roundone: 85% & roundtwo 86%). AR results were similar:
100/125 switches identified, 80% accuracy (roundone: 79.7%
& roundtwo 80.3%).

Note, that in 143 cases, participants did not communicate a
task switch (84 in VR and 59 in AR) but later correctly identi-
fied the task. As we noticed this phenomenon during the study,
we asked participants during the final interview. They stated
to have forgotten about stating the task swich and primarily
focused on identifying tasks. We had to exclude these cases
for calculating the time required to identify a task switch and
only considered them for calculating the recognition accuracy.
We found that in 83% of the cases, participants were able to
correctly identify a task switch.

Second, we looked at how quickly participants could detect
task switches. This took participants on average 5 s. They
were quicker in the AR (Mean = 4.94, SD = 4.01) condition
compared to VR (Mean = 5.11, SD = 3.71).

Summary.
From this we learn, that upon directing to look out for task
switches (a) participants are indeed able to correctly identify
switches of tasks (83% correctly identified taskswitches) and (b)
that they can do so before AVR users deeply start engaging
with the new task.

Recognition Accuracy and Time for Task Recognitions
Again, we first looked at how accurately participants could
identify tasks (Figure 3). Participants correctly identified 77%
of all tasks: 75 % for AR (roundone: 71% & roundtwo 79%) and
80% for VR (roundone: 80% & roundtwo 80%). At the same
time, participants were wrong about 71 tasks (23%). This
includes 33 cases where tasks were missed. Further analysis
revealed that the type of task had a significant influence on
whether or not it was identified correctly, χ2(4) = 14.267, p =
0.05. Cramer-V shows a strong relationship (≥ 0.3).

Authentication was often mistaken for tasks that had a very
similar observable behaviour. For example in AR, users were
typing characters onto a virtual canvas, which had the same
size in both tasks (PIN pad vs. keyboard). For an observer,
this results in the same mid-air motion, within the same size
of 3D space. In comparison, the xylophone-like writing task
in VR seemed to have a very unique observable behaviour,
resulting in a 100% recognition accuracy. This phenomenon is
described in more detail in Table 2. It shows a matrix of tasks
completed by the HMD user (lines) and the corresponding
guesses made by bystanders (columns).

Second, we looked at how quickly participants could iden-
tify tasks (Table 3). Overall, bystanders took 7 s (SD=1.6),
whereby they were quicker when observing AR (Mean= 6.63,
SD = 1.0) than VR (Mean = 7.81, SD = 1.92) gestures.

For AR, bystanders were able to identify taskread and taskwatch
quicker than the other tasks in roundone (Table 3). However,
they show a significantly lower success rate than the other



Table 2. A matrix of tasks (lines) and their corresponding guesses
(columns). guesscorrect is highlighted in green. For example, taskauth was
often mistaken for taskman (10) in VR and for taskwrite (9) in AR.

VR AR
auth read man type watch sum auth read man type watch oth sum

auth 24 0 10 1 4 39 20 1 0 9 0 1 31
read 0 24 0 0 2 26 0 20 0 0 7 0 27
manip 0 0 33 2 4 39 1 0 60 2 0 1 64
type 0 0 0 40 0 40 5 2 2 33 1 1 44
watch 0 2 0 0 25 27 5 5 0 1 27 3 41

sum 24 26 43 43 35 171 31 28 62 45 35 6 207

tasks and comparably it took participants longer to recognize
these task in roundtwo, whereas for all other tasks, bystanders
show a learning effect. Reading and watching a video require
consistent eye movements that can be tracked quickly through
AR glasses, however, the eye movements are the same for
both tasks, which result in a nearly 50% chance of guessing
correctly between both tasks (Table 2).

Analysis of the same tasks for the VR condition reveals that
bystanders had similar difficulties with the reading and watch-
ing task. Although there was a learning effect visible for both
tasks, they were also mistaken for each other. Yet, the success
rates for recognition are above 70% and better than for AR.
Qualitative data – mentioned in the next section – suggests
that, in comparison with AR, this may be due to the larger
virtual canvas that was provided in VR, which resulted in
more prominent observable gestures (e.g. head movements for
reading lines of text) for the bystander.

Summary
In general it is possible to determine task types AVR users
switch to. However, the time required strongly depends on
the task type: if there are tasks leading to similar observable
behaviour or require subtle interactions, as in our case the AR
reading and watching tasks, this increases recognition times.

Qualitative Results
Qualitative data was gathered pre-, mid- and post-study
through questionnaires and an unstructured interview. Data
from the interview was coded by two experimenters.

0% 20% 40% 60% 80% 100% 

AR	Bystander:	I	 think	my	interruption	was	
disturbing

AR	User:	I	 found	the	interruption	to	be	
disturbing

AR	Bystander:	I	was	confident	about	the	
timing	of	my	interruption

VR	Bystander:	I	 think	my	interruption	was	
disturbing

VR	User:	I	 found	the	interruption	to	be	
disturbing

VR	Bystander:	I	was	confident	about	the	
timing	of	my	interruption

Figure 4. On a 7-point Likert-scale (1=not - 7 = very much), for AR
(MD=5), the bystander perceived their interruptions to be more disturb-
ing than for VR (MD=3).

Table 3. The left column shows the overall success rate per task type. The
other columns summarize recognition times for each round (mean in s).

rate roundone roundtwo overall

AR
auth 55% 8.50 (SD=5.2) 7.09 (SD=3.5) 7.67 (SD=4.3)
read 56% 5.19 (SD=2.9) 6.42 (SD=4.4) 5.80 (SD=3.8)
manip 97% 7.58 (SD=6.0) 3.52 (SD=2.6) 5.69 (SD=5.2)
write 90% 7.36 (SD=5.1) 5.16 (SD=3.4) 6.26 (SD=4.4)
watch 75% 6.04 (SD=3.1) 9.21 (SD=7.4) 7.76 (SD=6.0)

VR
auth 69% 4.94 (SD=1.3) 5.04 (SD=1.6) 4.99 (SD=1.5)
read 71% 9.95 (SD=3.5) 8.14 (SD=2.2) 9.05 (SD=3.0)
manip 87% 10.2 (SD=4.7) 9.2 (SD=5.8) 9.68 (SD=5.3)
write 100% 7.62 (SD=3.5) 5.88 (SD=2.6) 6.75 (SD=3.2)
watch 72% 8.94 (SD=5.8) 8.3 (SD=4.3) 8.62 (SD=5.2)

Interruptions
Participants rated their perceptions of how disturbing the inter-
ruptions were on a 7-point Likert scale (1=not disturbing at all;
7= very disturbing). In AR, users did not feel disturbed when
they were interrupted (MD=2). However, observers thought
their interruptions was most likely disturbing (MD=5). In VR,
users also did not feel disturbed when interrupted (MD=2),
but contrary to AR, observers rated their interruptions as less
disturbing (MD=3) - see Figure 4.

Altough subjective feedback from the questionnaire suggests
that participants were not disturbed, 68% of HMD users men-
tioned in the unstructured interview that they would have
preferred to be interrupted during the change of a task. P6
states that it would be good if bystanders "[...] wait until I am
done with a task" (P6). 18% mentioned "uncritical tasks" as an
opportune moment for interruptions. 25% of HMD users high-
lighted the low cognitive load that was required to complete
the tasks, which they also stated as a reason for why they did
not perceive the interruption to be disturbing. "[completion of
the tasks] was not so bad, I could easily have a conversation
[while I am going through them]" (P23). 31% said that the
interruptions were found to be less disturbing as they knew the
bystander. "I trusted the voice" (P11). In AR, 25% of HMD
users said the interruption could have been less disturbing if
the bystander was in their field of view during interruption
rather than behind them.

Task Switches and Tasks
On a 7-point Likert scale (1=very bad, 7=very good), partici-
pants rated their overall recognition accuracy as good (MD=5)
and they perceived observing the task switch and recognizing
the type of task to be rather difficult (MD=3). Self-assessed
recognition accuracy and perceived difficulty significantly cor-
related in the second round, rs(32) = 0.6 (p < 0.05). Although
recognition accuracy stayed high (Med=5), perceived diffi-
culty increased, indicating that participants were better able
to assess the difficulty of the task type whilst maintaining a
good understanding of their own recognition skills (Table 4).
Similarly, although not significant, the data suggests a train-
ing effect between the rounds (i.e. recognitions were higher
roundtwo compared to roundone.)

A Pearson product-moment correlation coefficient also re-
vealed a negative correlation rs(32) = -0.59, (p < 0.05) be-
tween total success rate and perceived difficulty (Table 5).



Table 4. Results (Median) from post-round questionnaires showing an
overview of perceived difficulty and self-assessed confidence for recog-
nizing task switches and task types.

Round 1 Round 2
difficulty confidence difficulty confidence

tasktypes 3.0 5.0 3.5 5.0

taskswitches 2.0 5.0 3.0 5.0

Participants are able to judge themselves whether they are
capable of identifying a task and a task switch correctly, by
considering the difficulty of the observation. This was only
apparent in roundtwo.

In roundone, 36% of participants indicated that the best position
for observing task switches is from the diagonal front or side.
This number increased in roundtwo to 81%. In particular, 90%
of participants reported to have focused on the HMD users’
hand movements, 34% also looked at head movements and 5
participants mentioned looking at the eyes in AR (Figure 2).
Only one participant paid attention to possible sounds from
the headphones.

Participants also commented on what they thought would
improve their recognition success:
Emphasizing gestures. 50% of participants pointed out that

there should be unique movements to point out individual
tasks. "[...] larger differences between the gestures would
have helped [with the gesture recognition]" (P4). As an
example, the VR writing task was mentioned by three of
these participants. "[...] as soon as I recognized a unique
gesture, I was sure [...]" (P6).

Differentiating tasks. A quarter of participants pointed out
that the reading and watching task were particularly difficult
to observe and differentiate. They mentioned that it would
have helped if these tasks ended/started differently, such
that they could at least know when the task switch was
happening. "[...] special gestures at the beginning of a task
[...]" (P2). This is also reflected in the quantitative data
(Table 2) where this confusion of tasks became apparent.

Sound. Two participants acting as the bystander mentioned
that the sound from the headphones could be made louder,
such that bystanders can also listen in.

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7

Su
cc
es
s	r
at
e	
in
	%

Perceived	Difficulty	 (7-point	 Likert	Scale,	7=very	difficult,	 1=not	at	all)

Figure 5. A Pearson product-moment correlation coefficient revealed a
negative correlation rs(32) = -0.59, (p < 0.05) between total success rate
and perceived difficulty in roundtwo.
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Figure 6. On a 7-point Likert scale (7=very, 1=no) the majority of partici-
pants agreed (Med=7) post-study that the training helped in successfully
recognizing tasks and task switches. More than half of the participants
had very little or no prior experience with AVR technology (Med=1).

Change of head/body position. 21% of the bystanders men-
tioned that a change in head direction and/or body position
might support the recognition of a task switch.

A Pearson product-moment correlation coefficient showed no
relationship between prior AVR experience and success rate
for recognizing switches, rs(32) = -0.2, (p > 0.05) (Figure 6).

DISCUSSION AND IMPLICATIONS
In the following we discuss interesting observations and point
out design opportunities as well as directions for future re-
search, where appropriate.

Interruptions are (Not) Technology Dependent
At first glance, our data suggests that interruption behaviour
is technology dependent. VR observers interrupted after 57 s
while AR observers already interrupted after 17 s. This is
accentuated by the behaviour of 2 VR observers, who refused
to interrupt in order not to disturb an HMD user engaged in
their task, while not seeing the observer. Yet, the picture is
more diverse.

"Feeling Skilled" Reduces Technology Effects
Our analysis shows that people more quickly interrupt as they
become more confident in their ’interruption skills’, leading to
smaller differences concerning observation behaviour between
the two technologies (6.6 s in AR vs. 7.8 s in VR). Overall, it
seems that two aspects contribute to feeling skilled: becom-
ing more experienced (this effect was apparent in the second
round) and becoming more confident in identifying the cor-
rect moment in time an interruption occurs. One factor that
influences how quickly people interrupt and that we did not
investigate, is the urgency of the interruption. It would be in-
teresting to see whether findings from prior work in related
domains apply in the context of VR [30, 31], especially as by-
standers wanting to interrupt do not have visual cues to support
their decision making process, whre they evaluate theirtheir
own urgency against the impact of the interruption on the user.

Repetition Improved Interruption Behaviour
Bystanders’ self-assessed ability to judge the difficulty of
the observed tasks and task switches improved in the second
round for both technologies, resulting in more accurate and
quicker guesses for the majority of tasks that were uniquely
identifiable. Bystanders also became more skilled with their
strategies, such that they chose better positions to improve
their observability and focused on further gesture cues (e.g.
not just hands but also head movements and body position).



How the Technology Affected Observations
Overall, participants were quicker to identify tasks and task
switches in AR. However, they did this more accurately for the
VR condition. This seems to be influenced by the hardware
differences. AR affords subtle interactions that are within a
limited field of view, whereas VR also enables larger, more
prominent gestures. The latter enables bystanders to more
easily identify unique gestures, therefore improving accuracy.

The Necessity to Focus on the Bystander
Our findings suggest that future work should direct more at-
tention towards the bystander.

Generating Awareness on Interruption Location
We assumed AR interruptions to be perceived as less disturb-
ing by both bystander and user as AR HMDs allow parallel
viewing of the real and virtual world – unlike VR, where par-
ticipants are secluded from the real-world. Interestingly, only
one participant took advantage of this difference and inter-
rupted the AR user by waving and trying to get attention by
standing in front of them. We expected, the majority of partici-
pants to interrupt by catching AR users’ visual attention. Still,
they chose to interrupt through speech, independent of the
technology. Qualitative results revealed that eye contact was
made after interruption rather than before, suggesting that it
was possible to obtain social cues through the glasses. Adding
this feedback to AR users’ preference to see the bystander
when being interrupted might create awareness on appropriate
locations for interruptions, and could hence be included as
part of the training, when introducing HMDs.

Supporting Quicker, More Accurate Interruptions
For both technologies, initial feedback from participants sug-
gests, that HMD users did not find interruption as disturbing
as we expected. However, during the interview, the majority of
participants pointed out that they prefer to be interrupted dur-
ing a task switch or during an "uncritial task". The ambiguity
in their perception of the interruption is twofold: Firstly, par-
ticipants’ familiarity with each other seems to have decreased
negative effects interruptions may have, which is common in
work settings. Secondly, they pointed out the low workload
that was required to complete the tasks, which made being
interrupted less disturbing. This confirms prior work [2, 13,
37], where the person being interrupted is at the focus of the re-
search. However, our work highlights that situations in which
interruptions occur can be further enhanced by supporting
bystanders, e.g., to make quicker more accurate interruptions
during task switches, rather than during tasks.

Notably, prior work has investigated a vast number of solu-
tions to support quicker, more accurate interruptions, thereby
focusing on both sides: (a) the user – for example, the display
of interruptions in a 3D space [21], and (b) the bystander – for
example, traffic light feature to aid decision making [82]. It is
possible to repurpose the HMD device’s surface (e.g. on the
straps) to display such a traffic light system for the bystander.
Yet, this might create additional overhead in a co-located con-
text and be unnecessary due to people’s capability to naturally
analyse situations based on gestural cues. The effects of such
a technological mediation for interruptions in AVR settings
needs to be investigated in future studies.

Supporting Collaboration by Addressing Bystanders
Analysis of bystanders’ perceptions reveal that they were con-
cerned about the effect the interruption has on the user. In-
terestingly, this was more prominent in the AR setting than
in VR which may be a result of the AR users unintentional
feedback through their eye movements, immediately giving
away that they stopped the interaction. Bystanders concerns
about the negative effect their interruption has, support our
motivation to not only focus on the HMD users when design-
ing a collaborative AVR experience but also on the bystander.
Awareness on when and how to interrupt and familiarity with
the tasks improves gesture recognition and thus the ability to
successfully determine opportune moments for interruptions.
However, bystanders may not always know the tasks an HMD
user performs. This can be the case in environments where
HMD users perform very specialized tasks or as new tasks find
their way into VR. Our observation that prior experience in
AVR did not influence the success rate suggest that bystanders
may identify the task switch in such cases, in particular if the
new task requires different gestures. An in-depth investigation
of such cases should be subject to future work.

Design Implications to Improve Observability
Introducing HMDs to Mixed Collaborative Settings
When introducing an HMD to a collaborative setting, both user
and bystander should be familiarized with the device interac-
tions. This empowers the bystander to interrupt effectively by
recognizing tasks and task switches (both within 7s), rather
than interrupting during task completion - which is what they
would naturally do according to our findings.

Distinguishing Different Gestures
Participants stated that unique gestures led to a better recog-
nition of individual tasks (for example, position of hands in
relation to each other, typing gesture). This confirms previous
work by Rivera et al. [59] who found that prior knowledge of
people and tasks being observed provides the best case sce-
nario for observation success. At the same time, gestures that
were similar in multiple tasks (for example, authentication and
manipulation) allowed participants to identify task switches,
but not the particular task.

To support bystanders, designers could, firstly, increase distin-
guishability by pronouncing subtle cues. For example, in our
study reading and watching were very similar, but few partic-
ipants recognized subtle head movements. Hence, designers
could, for example, slightly scale up the text a user is read-
ing. As a result, users are likely to perform more recognizable
head movements as they read and switch between the lines.
An interesting question here is to strive a balance between
being easily observable while still being usable and ergonomic
(i.e. excessive head movements may cause fatigue). Second,
easy-to-recognize, task-specific gestures could be supported.
For example, starting the playback of a video could be realized
with a simple swipe gesture instead of a button click if those
were used in another similar task.

Adapting Real-World Conventions
In congruity with prior work [33, 35] and well known de-
sign principles, such as Nielsens heuristics [56], designers



could adapt real-world conventions when designing AVR in-
teractions. Prominent gestures may be used to provide social
cues to the bystander, such as opening and walking through
a door to join a conference/presentation in AVR. Similarly,
head/body position may be used to show deep engagement
to the bystander: For example, by displaying high-workload
tasks at the bottom of the FOV, AVR users would be guided
to look down for interaction. Another approach could be to
embed common signs from sign language (e.g., stop sign) into
gesture interaction with HMDs, which provide clear clues to
the bystander.

Exploiting Spatial Layout of the Environment
It was also interesting to see that participants sometimes based
their decision for guessing the task type based on head direc-
tion and/or body position in the real-world. This creates two
interesting design opportunities. On one hand, systems could
be designed in a way, such that virtual tasks in which it is ok
to interrupt (for example, reading emails), would always be
performed in the same location, such as a virtual desk, mapped
to a constant real-world location. On the other hand, it creates
an opportunity for HMD users themselves to control, whether
or not they would be ok with being interrupted. For example,
HMD users could decide to read email displayed in a canvas
floating in mid-air in front of them (and thus blend with the
current task) – similar to reading email on a smartphone on
the go – or change their location and read emails at their desk.

Designing Non-Observable Task Switches
Note that there are cases in which it is not desirable that ob-
servers can easily identify task switches. Although the success
rate was only 69%, the authentication task was recognized
fastest in VR but performed the worst with regards to both
recognition accuracy and time in AR. Although the tasks were
designed in a very similar way, the latter HMD provides a
smaller field of view for interaction, which seems to provoke
sublte interactions and decrease bystanders ability to recognize
the tasks. This is important from a usable security perspective,
since identifying this type of task switch may allows observers
to determine the beginning of users entering a password and
hence perform a shoulder surfing attack [22]. For developers
this means that in order to decrease observability, subtle in-
teraction in a limited FOV should be designed. To address
this, future work could investigate, whether AR interaction
methods for authentication can be transferred to VR settings
and whether this improves security.

Similarly, we believe that the decision to hide information
and work in a "private" mode, for example, during authentica-
tion, should be an option for the AVR user and/or interactions
should consciously be designed to be unobservable by a by-
stander. For example, in the context of VR, where location
and space can be easily tracked, interactions can be designed
such that the user is facing a "private real-world wall". This
would hide their input from bystanders without changing the
experience itself for the AVR User. Tekin and Reeves [69]
found that fully or partially hiding user gestures also affects
bystanders perception in public spaces. However, this needs
to be re-evaluated in the context of co-located collaboration
with HMDs.

CONCLUSION AND FUTURE WORK
In this paper, we investigated how bystanders interrupt an
HMD user and whether they are able to recognize tasks and
task switches solely through observing HMD users’ gestures.
Task switches were found to be an opportune moment for
interruptions in previous research and to our knowledge, this
paper takes the first step towards applying these findings into
the context of HMDs. Results from our study indicate that
observers are able to correctly guess task switches 83% of the
time [H1] and that they are able to identify the type of tasks
77% of the time [H2], both within 7 s.

To our knowledge, this is the first paper on interruption be-
haviour and observability of gesture interaction in HMD set-
tings. This ground research enables to do further studies on the
differences between external (through gesture recongition and
naturally) vs internal interruptions - from a user and bystander
perspective. Additionally, future work may review whether by-
standers’ ability to retrieve meaning from AVR users’ gesture
interactions, has a positive effect on social acceptability [53]
of HMD devices.

Dabbish et al. reviewed the workload interrupters require [13].
This may be applied to our work, to determine workload for
gesture recognition. We decided to explore interruptions be-
tween collaborators that are aware of the tasks at hand, it would
be interesting whether tasks can be recognized by bystanders
without priming (e.g. training prior to observation). This may
allow passive bystanders to join a collaborative group of HMD
and non-HMD users, without prior knowledge of the system.
Similarly, we are planning to do further studies with more
tasks and sub-tasks to understand how the type of task may
influence interruption and gesture recognition. Our work bene-
fits designers and practitioners who want to introduce HMDs
to co-located collaborative settings.
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