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ABSTRACT
We present a data logging concept, tool, and analyses to fa-
cilitate studies of everyday mobile touch keyboard use and
free typing behaviour: 1) We propose a filtering concept to log
typing without recording readable text and assess reactions to
filters with a survey (N=349). 2) We release an Android key-
board app and backend that implement this concept. 3) Based
on a three-week field study (N=30), we present the first anal-
yses of keyboard use and typing biometrics on such free text
typing data in the wild, including speed, postures, apps, auto
correction, and word suggestions. We conclude that research
on mobile keyboards benefits from observing free typing be-
yond the lab and discuss ideas for further studies.
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INTRODUCTION
We see two main lines of HCI research on mobile touch key-
boards today: First, improving usability and performance by
optimising keyboard layouts [66] with objectives like speed,
familiarity, and auto correction [8, 23], also under strong con-
straints (e.g. only swapping two keys [9]), and by adapting
keyboards to individual typists [25], including constraints [30]
and context, like hand postures [65]. This addresses the grand
goal of fast and error-free (mobile) text entry [41]. Second,
improving privacy and security by identifying or authenticat-
ing [20, 31] users based on behavioural biometrics related to
tapping [3, 13] and swiping [12] during text entry, for example
to protect data or accounts from unwanted access.

Both keyboard adaptation and biometrics assume that typing
varies between users. These research interests motivate study-
ing individual behaviour in free text creation in users’ everyday
lives: Many aspects of individual behaviour may be difficult
to observe in lab studies which prescribe fixed settings and
behaviours (e.g. hand postures, contexts). The value of taking
mobile HCI research beyond the lab has been pointed out both
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Figure 1. Our ResearchIME keyboard app for free text typing studies in
the wild, based on Android’s open source keyboard. Logged events are
sent to the researchers’ server. However, data is filtered on the device to
avoid logging readable text. The figure shows a random n-gram filter;
non-redacted data is highlighted. In addition to the filter, a private mode
button allows users to pause logging entirely.

in general [7] and specifically for typing [32]. Recent work on
touch keyboards highlights differences in a comparison of lab
and field studies [52].

However, studies in the wild so far have used almost exclu-
sively transcription tasks with given text, although text creation
tasks are a valuable complementary methodology [61]. This
is due to privacy concerns (e.g. [52]), raising the question of
how to study typing in natural free text composition without
recording readable private conversations.

We address this problem with a novel keyboard app and
data filtering concept (Figure 1): It stores all typing events,
but omits (redacts) the vast majority of touch locations and
keys/characters. This promises results of high external and
ecological validity. Such data is valuable to inform future
keyboard adaptation algorithms and optimisations, as well as
biometrics, due to users’ varied everyday behaviours and con-
texts, which contribute to individual keyboard use. Examples
for related research questions include:

• Behaviour: How are touch keyboards used in everyday typ-
ing? In particular, beyond lab measures; e.g. use of “smart”
features like suggestions and auto corrections.

• Biometrics and individualisation: How well do touch typing
biometrics work in the wild? Which features best capture
individual behaviour in the wild?

We contribute: 1) A concept for logging typing without read-
able text, with an online survey (N=349) on different redac-
tions (filters). 2) An open-source implementation as a key-
board app with a first deployment. 3) Analyses and insights
into keyboard use and typing biometrics based on 5.9 million
keyboard events collected in a three-week field study (N=30).



RELATED WORK
We relate our work to mobile touch keyboard adaptation and
optimisation, as well as mobile typing biometrics. In particular,
we consider study data and research goals and applications.

Motivating Areas: Optimisation, Adaptation, Biometrics
Many projects optimise keyboard layouts [66] with different
objectives [8, 23] and constraints [9], and for different mobile
form factors and hand postures [50]. Others adapt mobile key-
boards to typist [25, 30] and context [27] or both [65]. This
research typically collects data in the lab to evaluate perfor-
mance (speed, error rate) of the new design. To compute error
rates, researchers have to know the true intended text. This
is difficult beyond transcription tasks [26, 46] (judgement by
crowd workers is one approach [61]). However, many aspects
are insightful to study “in the wild”, such as touch distribu-
tions [32], auto corrections, word suggestions, and varying
contexts. Our concept and tool enable such analyses.

Mobile typing biometrics is another area interested in quan-
tifying (individual) typing behaviour, namely to identify or
authenticate users [20, 31], also for passwords [3, 13]) and
gesture-typing [12]. A 2013 survey [57] found that 73 % of
typing biometrics research collected data in one (lab) session.
A 2016 follow-up on mobile touch biometrics [58] called for
data collection tools. A “roadmap” for mobile biometrics [53]
found that comprehensive datasets on keyboards are not avail-
able and that the lab influences behaviour. A comparison of
implicit authentication methods [38] also concluded that eval-
uation on real world data is needed, but difficult due to privacy
concerns. These conclusions strongly motivate our work.

Studying Typing in the Wild
We argue that the described lines of text entry research could
greatly benefit from typing data in the wild, based on three
aspects of interest, also motivated by related work:

Assessing real-world variability in keyboard use: A founda-
tion for designing adaptive UIs is the assessment of variability
in user behaviour [11]. For mobile touch and typing, several
sources and dimensions of behavioural variability have been
identified, mostly in the lab, such as: targeting patterns [63],
finger placement [34], perceived input point [33], and hand
posture [5]. As keyboards become equipped with novel (adap-
tive) features, studying their natural use in the wild may re-
veal further user variabilities, such as preferences in input
style [52]. For instance, our results indicate individual and
context-dependent differences in the use of word suggestions.

Respecting real-world usage contexts: Advanced keyboard
adaptation schemes already utilise a variety of context factors,
examined in the lab, with adaptations related to key, hand
posture, and individual typists [65], as well as body move-
ment [27]. Hence, following related work on typing studies
with high external validity [32, 52], it seems adequate to fur-
ther study (adaptive) keyboard use on data collected in the real
world, where contexts vary naturally in everyday interactions.
This motivates our work on collecting and analysing such data.

Evaluating real-world performance and user experience:
Reyal et al. [52] showed that performance and user experi-
ence of mobile touch keyboards vary between lab and field,

and that both types of studies should be conducted. They pro-
posed an experience sampling method (ESM) that prompts
transcription tasks on users’ phones throughout the day. In
contrast, we present a logging and filtering concept to observe
typing behaviour in users’ own natural free text compositions.

In summary, related work shows that there is an opportunity to
inform and advance research on mobile touch keyboards and
biometrics by studying free text typing in the wild. Existing
apps for recording typing data use given text/prompts (e.g. [2,
4, 16]). To the best of our knowledge, we present the first tool
and analysis for natural typing, including the use of “smart”
keyboard features, like auto correction and word suggestions.

Beyond HCI – Mobile Texting Research
Research on mobile texting in psychology uses a variety
of methods, like lab studies with scenarios (e.g. writing an
email [21]). In another method, participants submit their last X
sent messages [22], or all messages sent within a day [45], af-
ter manually removing private information. This does not work
well for keyboard research, since typing is hard to "self-report".
However, inspired by these methods, our logging concept also
gives people the control to manually exclude selected data.

PRIVACY-RESPECTFUL KEYBOARD LOGGING
We use a replacement keyboard app and data filtering on three
levels. This section explains how we developed this concept.

I. Supporting Privacy and Trust
Prospective participants may face privacy concerns, depending
on their views and relationship to the researchers. Here, we see
three main cases: 1) They fully trust the researchers. 2) They
trust the researchers, but are concerned that private content
might still be looked at when handling the data, even if just by
accident. 3) They do not trust the researchers at all. Technical
privacy mechanisms seem less of an issue in the first case,
and the third case seems difficult to support, since we believe
that no one should participate in a study if researchers are not
trustworthy. Hence, we focus on the second case.

Scope: Our concept facilitates privacy in the sense that re-
searchers cannot read content when collecting and analysing
typing data according to their non-malicious research activi-
ties. This aims to help increase participants’ trust in the study
and supports researchers in conducting privacy-respectful data
recording and analyses.

Disclaimer: We do not claim protection against malicious
attempts to spy on content. While our concept makes this
more difficult, a keyboard app alone cannot counter threats like
hacking into a database for “de-anonymisation” (i.e. inferring
if a user is part of a dataset), which has been shown to be a
general threat for large and sparse datasets [48].

II. Requirement Analysis: Data Desired by Related Studies
We conducted a literature search to inform what our logging
tool should ideally record. We focussed on work that utilises
data on (individual) keyboard use, either to improve usability
or privacy and security. Hence, we used the search terms mo-
bile touch keyboard adaptation/personalisation/optimisation,
and mobile touch keystroke/typing biometrics in conference
proceedings, the ACM Digital Library, and Google Scholar.



Data (What?) Reveals text? Data Usage (How?) Study/Application Goal∗ (Why?)

typing speed EVL [27, 50, 52]

inter key times TXT [27], KBA [65], OPT [23, 50],
BIO [13, 31, 67]timestamp no

intra key times TXT [27], BIO [13, 20, 31, 67]

entered characters KBA [6]
associate data – keys KBA [6], OPT [23, 50], BIO [20, 31]letter/key

yes
(if ordered)

error rate EVL [30, 50, 52, 62, 65]

raw values (x, y) TXT [27], KBA [55], BIO [13, 20]

distribution per key TXT [15, 29, 30, 65], BIO [20],
ANA [5, 59], KBA [65]

offset (x, y) BIO [13, 20, 31]

key-to-key distance BIO [13, 37]

touch location
yes
(if ordered)

drag (down to up) TXT [27], BIO [13, 31]

raw values BIO [1, 13, 20, 31, 67]
touch pressure no

in touch model KBA [62]

touch area no raw values BIO [1, 13, 20, 31, 67], KBA [28]

independent variable ANA [5, 59], BIO [13, 67]
from extra sensors KBA [17]hand posture no
infer from touches KBA [15, 28, 65]

keyboard size no width, height ANA [54]

inertial sensors no raw values, timeseries TXT [27, 28, 47], BIO [20, 31, 67]

suggestions yes independent variable EVL [51]

on/off, self-reported ANA [49]
auto-correction yes

controlled by behaviour TXT [62]

* TXT: infer intended text, EVL: evaluate text entry performance, ANA: analyse user behaviour,
KBA: adapt/personalise keyboard, OPT: optimise keyboard layout, BIO: authenticate/identify typist

Table 1. Studied keyboard data, based on >70 papers and surveys on
mobile (touch) keyboard use, optimisation, adaptation, and biometrics.
Columns show what data is of interest, whether it could be used to recon-
struct private text if logged in free composition, how the data is consid-
ered, and why it is useful (with examples, not meant to be exhaustive).

We cannot discuss all reviewed work here, but as an overview,
we give starting points for further reading: Teh et al. pro-
vide surveys on typing biometrics in general [57] and for
mobile touch devices [58]. Overviews also exist for mobile
keyboard adaptation/optimisation [39, 46]. Kristensson and
Vertanen [41] list recent mobile (touch) keyboards.

We reviewed the work with regard to these questions: 1) Which
data is observed, related to keyboard use and typing behaviour?
2) Which behaviour/performance measures are computed? 3)
Which models are employed, for analysis and in technical
systems? 4) What is the goal of observing this data? This
requirement analysis resulted in a list of common data dimen-
sions that should ideally be recorded (Table 1).

III. Logging Strategy: Redacting Text-Revealing Data
Our analysis revealed the sources of concern with regard to
private text content: logging keystrokes/characters, touches, as
well as word suggestions and auto-corrections.

Several strategies exist: Draffin et al. [20] removed timestamps,
shuffling the data. They lost temporal information, which is
used in many cases (see Table 1). Kumar et al. [43] logged
typing for given tasks in a custom browser; they could only
observe this one application. A scheme for desktop typing [19]
recorded the top 200 most common English words. It directly
aggregated data according to the specific study. This hinders
reuse for other analyses. Another desktop logger [24] obfus-
cated text by replacing characters with “m”, yet a lot of work
on mobile typing needs to observe behaviour per key.

Promisingly, our analysis showed that the vast majority of
evaluations could be extended to free text composition even if
we only record keys and touches for some keystrokes:

• Keyboard adaptation typically uses touch distributions per
key. Most language-aware system parts use short sequences
(e.g. n-grams) – and language modelling algorithms can be
evaluated on text corpora, without keyboard data.

• Research on typing biometrics commonly uses models for
key-to-key transitions. Hence, recording keystrokes for se-
lected words or character tuples/triples is sufficient.

• Finally, the (relatively few) studies on word sugges-
tions/corrections are interested in occurrences or availability,
which does not require recording the involved words.

Hence, a simple yet viable strategy to support most studies
without recording readable text stores all keyboard and typing
events, but omits touch locations and keys/characters for the
vast majority of these events.

IV. Three Filter Levels: Fixed, Researcher, Participant
We identified three filter levels for the sampling of data that
should (not) be redacted, by clustering the concerns and re-
quirements in the related studies.

Filter Level 1 – Fixed Filtering: Some typing data should
never be recorded. Filters on this level trigger automatically
(e.g. never record data when typing in password fields).

Filter Level 2 – Researcher: A study may only need certain
types of data. For example, we could sample based on location,
time, text content, word type, app, or random selection.

Filter Level 3 – Participant: This level gives participants direct
control over the logging (e.g. with a “recording on/off” button).

V. Choosing Filters and their Parameters
We explored Level 2 filters related to characters, words, and
randomness, namely logging: everything, only nouns, only
verbs, only adjectives, random words, the 400 most common
words in the typist’s language (similar to [19]), and random n-
grams. We chose these filters to cover a range of options which
are all rather generally applicable and informative according
to our requirements analysis.

Since parameters have the strongest impact on the random
schemes, here we focus on discussing those. In particular, to
develop a deeper understanding and a more formal perspec-
tive of the filter settings, we conducted a “simulated word
guessing” analysis: We applied random n-grams filters with
sample rate p to the words of the enron mobile data [60]. We
computed the ratio r of words that would be recognised if a
researcher/system still recognises words with edits of up to
x % of the word. That is, we use edit distance as a proxy for
(human) interpretation. We repeated this 20 times for stability.
Figure 2 plots the results as x vs r with lines per filter (i.e. n, p
combination). The left plot shows that going beyond p = 0.1
drastically increases the ratio of recognised words. By com-
parison, in the right plot, we see that increasing n has less
influence in this analysis. Still, higher n clearly increase the
ratio of recognised words as well, as is to be expected.



Based on this analysis, the reviewed research interests, and
manual checks looking at filtered text, we chose n = 3 and p =
0.1. These analyses and our implemented filter also include
a minimum gap of one character between loggings to avoid
longer n-grams by chance. Table 2 shows examples on text.

VI. Online Survey on Filters
We conducted a survey to assess first reactions to the described
Level 2 filters. It was distributed via social networks and a
university mailing list, and was completed by 349 people (57 %
female) with a mean age of 24 years (range: 17-68 years).

The survey asked people to imagine that they take part in
a scientific study on mobile keyboard use, which logs their
everyday typing. This scenario stated that data is securely and
anonymously stored and analysed and that no passwords are
logged. It also mentioned that recording can be turned off
temporarily at any time. The survey then presented the filters
with the described settings. Each filter was explained with the
same seven example sentences in which the characters/words
that would be logged by said filter were highlighted in red.

The survey’s example sentences were taken from a German
university chat corpus1. We selected sentences that both cover
casual small talk, as well as more sensitive information (e.g.
illness of a relative). The purpose of this mix was to provoke
ratings for the filters themselves, not for the filters in com-
bination with specific sentences. Participants rated perceived
privacy violation on a five-point Likert scale.

Figure 3 shows the results: Logging everything was almost
unanimously seen as a privacy concern. This demonstrates the
need for filters. Adjectives and random n-grams caused the
least critical ratings. A Friedman test with post-hoc analysis
showed significant differences between all schemes (all p <
0.05), apart from: random words vs common words, random
n-grams vs common words, and random n-grams vs adjectives.

VII. Conclusions for our Deployment
For the deployment in this paper, we chose random n-grams
with n = 3, 10 % chance of logging, and a minimum logging
gap of one character. This avoids logging whole words and
received good subjective ratings in the survey. Table 2 shows
an example of using this filter.

The random n-gram filter (with small n) is also supported by
language properties2: 1) identical bi/trigrams occur in many
words; 2) most two to three letter words are common ones used
by everyone (e.g.“the”); 3) due to the exponential distribution
of n-grams the vast majority of samples are the language’s top
ones (e.g. “th”). Thus, similar bi/trigrams are expected across
users and an inverse mapping back to words is non-trivial.

This does not mean that nothing could ever be inferred; ma-
licious intent is beyond our scope. However, our hands-on
experiences with the chosen filter in our tests and analyses
for this paper strongly support the conclusion that no readable
text is revealed when handling the filtered data in line with the
research interests of the analysed literature.
1http://www.chatkorpus.tu-dortmund.de/
2e.g. www.norvig.com/mayzner.html, accessed 5th September 2017.
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Figure 2. Filter comparison by “simulated word guessing” (see text).
Left: different p with n = 3. Right: varying n for p = 0.1.
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Figure 3. Results from the Likert questions on privacy concerns about
different possible Level 2 sampling-based filter schemes (N = 349).
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mier international_conference_of Human-Computer Interaction. For_first-time at-
tendees,_CHI_is a place_where_researchers and_practitioners gather from_across
the world_to discuss the latest_in interactive technology. We are a multicultural
community from highly_diverse_backgrounds who together investigate new_and
creative ways_for people to_interact. At this year’s_CHI - pronounced ’kai’ -_the
theme will be engage. Our focus will be to engage_with people, to engage with
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Table 2. Results of applying our trigram filter with 10% logging proba-
bility to the CHI’18 “Welcome from the Chairs” message. Logged spaces
are replaced by “_” for visualisation. For comparison, the bottom row
shows results for a 5-gram filter with 30% logging probability.

IMPLEMENTATION

Approach: Keyboard App
For security reasons enforced by the OS, the required data
(Table 1, e.g. touches) can only be fully accessed by the key-
board. Rooting a device can overcome this, but may restrict or
bias the pool of participants. Hence, we decided to replace the
keyboard with a custom app. Other work [2] reached the same
conclusion. However, their app used a given prompt. This is
not suitable to study free everyday typing.

http://www.chatkorpus.tu-dortmund.de/
www.norvig.com/mayzner.html


Keyboard GUI
Our keyboard is built upon Google’s Android Open Source
Project (AOSP) Keyboard3. This allows us to stick as close
as possible to the default keyboard that most Android users
already know. We did not change or limit any features, but
added a small button for the private mode, as explained next.

Private Mode and Other Filters
A private mode button (Figure 4) realises the privacy filter
Level 3. No data is recorded while in private mode. The button
is always visible while the keyboard is open.

Level 1 filters were implemented based on the text field types
provided by Android. In particular, our app automatically
switches to private mode for the following fields: password,
phone number, person name, postal address, and email address.

As a Level 2 filter, we chose random n-grams for our study
(with n=3, as in our survey). Our app provides a flexible frame-
work that allows for integration of different (custom) filters.

Data Logging
We record the following data per touch event: timestamp, touch
event type (down/move/up), app, hand posture (e.g. “right
thumb”), keyboard state (locale, width, height), device orienta-
tion (portrait/landscape), touch pressure and size (as reported
by the Android API), and other sensor values. Availability of
these other sensors and virtual sensors depends on the device –
they include: accelerometer, gravity, gyroscope, magnetic field,
light, proximity, pressure, relative humidity, and temperature.

We also record “content change” events in the current text
entry field, yet we only log the length of the text, not the text
itself. Word suggestion picks and auto-corrections are also
recorded, without the words, but with basic measures (e.g.
word length before/after correction). For the sampled random
n-grams (i.e. the “non-redacted” keystrokes), we also record
key/character (e.g. “a”) and touch location (x, y on keyboard).

Usage and cause of the private mode are also logged for our
evaluation. Causes can be automatic activation, for example
due to a password field, or manual activation by the user.

Experience Sampling Method (ESM) Module
Besides typing, mobile HCI researchers are often interested
in additional context data. This may also include information
that is difficult to assess reliably only with device sensors.

To account for such research interests, we developed a simple
experience sampling method (ESM) module. It shows a key-
board overlay – only when the keyboard opens to not interrupt
typing. Researchers can configure the sampling procedure (e.g.
show with random chance or once per hour). In our study,
the ESM screen showed up when opening the keyboard, but
no more than once every ten minutes. It asked participants to
select their current hand posture (Figure 5). Researchers may
change this to collect other data. Our pretests showed that it is
advisable to not require more than one touch on such screens.

3https://android.googlesource.com/platform/packages/
inputmethods/LatinIME/, accessed 5th September 2017.

Figure 4. The private mode button, added to the left of the word sug-
gestion bar. The symbol shows whether it is inactive (left) or activated
(right). No data is collected in private mode. We chose a symbol instead
of text to save space on the keyboard. To ensure that functionality and
meaning was clear to all participants, we explained the button and pri-
vate mode in the initial study meeting.

Figure 5. Screenshot (here: for portrait use) of the experience sampling
method (ESM) overlay from our study. It asked participants to indicate
their current posture by touching the corresponding pictogram, which
also made the overlay disappear, revealing the keyboard underneath.

Backend
Our backend is a Java server application, using the Play Frame-
work4. The recorded data is transmitted from the keyboard
app to this server via HTTPS TLS. The server stores the re-
ceived data in a MYSQL database. An abstract unique user
id identifies data from the same participant. It is generated
by the server and sent to the client when connecting for the
first time. The backend offers a configuration file to change
settings during the study, which are regularly checked by the
clients. This allows for custom extensions, for example to
change aspects of the keyboard during the study. This is useful
for within-subject study designs. The study presented in this
paper is explorative and thus did not make use of this feature.

USER STUDY
We conducted an explorative study to analyse everyday key-
board use and test our app as a research tool. With this study we
demonstrate what can be computed on this kind of data, “clos-
ing the circle” from concept and tool to analyses. Moreover,
we contribute new insights into keyboard use and biometrics
based on this first free typing data collected with our app.

Apparatus
We employed our app and two questionnaires – one was an-
swered at the start, the other at the end of the study. They as-
sessed demographics, self-perception of behaviour (e.g. hand
postures), and study feedback (e.g. private mode, differences
to usual keyboard). People used their own smartphones.

Participants
We recruited 30 participants (15 female) via a university
newsletter and social media. Their mean age was 24 years
(range: 18-33). One was left-handed. 80 % were students, 50 %
related to computer science. The vast majority were proficient
touch keyboard users. They received a e 15 gift card.

4https://www.playframework.com/, accessed 5th September 2017.

https://android.googlesource.com/platform/packages/inputmethods/LatinIME/
https://android.googlesource.com/platform/packages/inputmethods/LatinIME/
https://www.playframework.com/


Procedure
We invited participants to our lab to explain the study, the
logged data, and the privacy protection scheme. We installed
our app on their own devices and configured it to match their
usual settings (e.g. haptic feedback, auto correction). We ex-
plained the ESM screen and the private mode button. We
encouraged them to use it as much as they liked to stop data
recording. They also filled in the first questionnaire. After
three weeks, we invited participants via email to fill in the
final questionnaire and instructed them to uninstall our app.

Limitations
Participants used our keyboard which might have influenced
their behaviour, for example due to different visuals and key
sizes, yet also different underlying algorithms. However, our
app is based on the Android default keyboard; most Android
users are likely to be familiar with this keyboard. They also
started with Google’s Android stock dictionary for auto cor-
rection and word suggestions. Future studies should import
participants’ existing dictionaries.

Hand posture was assessed via ESM and thus might not always
be accurate. For example, users might select the posture icon
that’s easiest to reach. We iterated the design of the selection
to reduce effort, yet decided against randomising posture icon
order to avoid mistakes due to inconsistency. However, in the
post-study questionnaire, all but one person (strongly) agreed
with “I always selected the posture I was actually using”.
Moreover, our data includes a “possibly outdated” flag that
indicates if the keyboard has been closed and re-opened after
the last ESM answer.

This paper focusses on typing, yet our app is also capable of
recording text entry via gestures, which we will analyse in the
future. Since gestures produce whole words, filter schemes re-
lated to words seem most practical here (e.g. only adjectives).

The online survey mostly reached people from one (West-
ern) country, and study participants were mostly students in
tech-related fields. Their privacy concerns and behaviour may
not generalise across different cultures and other user groups.
However, they are a well-suited sample for a first feasibility
study as they are likely to use keyboards a lot.

We cannot entirely rule out that our data contains typing from
non-participants due to device sharing, yet all participants re-
ported to have personal “unshared” devices. We also told them
to use the private mode if they shared their device temporarily.

DATA SELECTION AND PREPROCESSING

Excluding Typing Breaks for Temporal Analyses
To analyse speed and timing of natural typing, we need to
exclude breaks in the typing process that would distort the
results (e.g. breaks for thinking, or external interruptions). To
achieve this, we define a maximum typing gap time dt . If a
typist takes longer than dt to press the next key, we assume this
to be an interruption of the typing process and do not consider
the related keystrokes for computing speed or timing features.

We chose a conservative threshold, setting dt to four seconds.
This is the longest median time per character, which occurred
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Figure 6. Distribution of keystrokes over the day (shaded ±2σ ).

for rarely used symbols. Hence, this choice is motivated by
excluding breaks, yet retaining delays that we consider part of
natural behaviour, such as searching for a rare symbol.

Excluding Other Input Methods for Keystroke Analyses
We logged (anonymous) text entry gestures (see e.g. [42, 52]),
yet people rarely used gestures (<4.5 % of entered text). Hence,
we focus on typing and exclude gestures. For computing speed,
we also exclude events that add more than one character per
touch (e.g. auto correction, picking a suggested word).

KEYBOARD USAGE ANALYSES AND RESULTS
We conducted several analyses to cater to a range of reviewed
research interests. Thus, we analyse different aspects of key-
board use and biometrics. We analyse behaviour on different
levels, including typing activity, speed, postures, orientation
and context (apps). We also “zoom in” on aspects that seem
particularly interesting to evaluate for free everyday typing in-
stead of given text (e.g. auto correction, deletion, suggestions).

Dataset Overview
We logged 5,930,006 keyboard events, including touch
down/move/up, auto corrections, suggestion picks, and text
field content changes, plus 27,396,719 sensor readings. There
are 963,398 keystrokes (204,685 non-redacted). We analyse
non-redacted data whenever keys/characters or touch locations
need to be known, otherwise we use all data. The contribution
of individuals varied from 1489 keystrokes to 180,948 (median
20,353). The hand posture ESM was answered 7025 times. In-
ter key intervals had a grand mean of 369 ms (SD 425 ms), ex-
cluding breaks as explained in the preprocessing section. The
top ten most frequent keys/characters were: space (10.8 %),
delete (8.2 %), e (8.1 %), a (5.3 %), i (5.2 %), n (5.1 %),
s (4.6 %), r (4.4 %), t (3.9 %), and h (3.6 %).

Typing Activity Over the Day
Figure 6 plots the distribution of keystrokes over the day. On
weekdays, peak activities occur before noon and in the after-
noon (5 pm). Weekend typing is shifted towards the afternoon,
with an evening peak around 8 pm. Rather high standard devi-
ations (shaded) are a result of people’s individual behaviour.

Typing Speed
We report speed in words per minute (WPM). A “word” is
five characters [52, 64]. Per user, we measure the number of
keystrokes T that entered a single character, and the time S for
these keystrokes. We thus exclude gestures, suggestions, auto



corrections, and breaks. We use S,T to compute WPM with
the standard formula (equation 3.1 in [64]). Table 3 shows the
results. The mean speed was 32.1 WPM. Comparison between
postures is difficult, since not everyone used every posture.
However, two thumbs/fingers achieved highest speeds. The
correlation of number of keystrokes and mean speed was sig-
nificant (r = 0.50, p < 0.01); people who typed more also
typed faster. We found no significant correlation of speed and
screen size (r =−0.08, p > 0.05).

Hand Postures
We report relative use of postures per person. The most popular
postures were two thumbs (74.5 %) and right thumb (12.7 %).
All other postures had a median relative use below 3 %. How-
ever, individual participants favoured other postures: For exam-
ple, one almost exclusively typed with the right index finger,
another one used it about 80 % of the time. Posture changes
happened for everyone. On average, participants used 4.6 dif-
ferent postures at least once. In our pre-study questionnaire,
28 people said they used right thumb (very) often (4 & 5 on
5-point Likert scale). Only 15 said this for two thumbs. Thus,
people underestimated their relative use of two thumbs com-
pared to right thumb. One noticed this herself and reported that
she was surprised by her amount of typing with two thumbs.

Auto Correction
We recorded 7686 auto corrections (max. per person: 1565).
Among its users (N=16), the median number per person/day
was 15.3. We found no trend over time. The mean length of
corrected words was 5.16 characters prior to correction, 5.24
afterwards. In 7043 cases, correction left the length unchanged,
in 546 cases it added at least one character, and 97 corrections
removed at least one. The mean Levenshtein distance [44]
between entered and corrected word was 1.27.

Word Suggestions
People picked 13,682 word suggestions. The median per per-
son/day was 9.1 among those who used suggestions (N=27).
We found no trend over time. The mean ratio was 1.6 %. Thus,
people on average picked one suggestion every 63 keystrokes.
However, suggestion use was highly individual: The user with
the highest ratio had 9.4 %, picking a suggestion every 11
keystrokes. This was also the slowest typist (15.6 WPM). For
closer analysis, we recalculated speed for this user including
words entered via suggestions, which resulted in 34.5 WPM.

We also analysed typing speed calculated only on word sug-
gestion picks: We calculated the total number of characters
in the suggested words (as the text length T ), and the sum of
the durations between each suggestion pick and the previous
keystroke (as the time taken S). This resulted in a mean speed
of 75.6 WPM (95 % CI: 68.9 – 82.2). This provides an esti-
mate of the hypothetical text entry speed that participants in
our study could have reached if the displayed word suggestions
would have always included their desired next word.

Typing Device Orientation
Only 0.63 % of all keyboard events occurred in landscape
mode. 13 people (43 %) always used portrait. One generated
16.2 % of her data in landscape orientation, the second highest
participant had 1.7 %, and all others were below 1 %.

WPM Mean 95% CI N
Keystrokes
count %

all postures 32.1 28.5 – 35.8 30 805,972 100
two thumbs 36.8 31.8 – 41.7 22 119,956 14.9
right thumb 25.3 22.3 – 28.3 28 36,997 4.6
left thumb 27.3 14.2 – 40.5 14 798 0.1
two index fingers 36.7 30.3 – 43.0 18 2498 0.3
right index finger 24.4 20.1 – 28.7 27 15,385 1.9
left index finger 30.8 24.5 – 37.0 20 1696 0.2

Table 3. Typing speeds. Not everyone used every posture (see N column).
The individual postures do not sum up to 100 %, since the “all postures”
row includes events for which the posture is unknown.

Category Keystrokes Sugg. ratio (%) AC ratio (%)
count % of data

Messenger 767129 82.7 1.6 0.9
Browser 62210 6.7 0.9 0.5
Notes 13677 1.5 1.0 0.4
Email 13465 1.5 1.0 0.6
Social 13324 1.4 0.6 0.1
Shopping 12992 1.4 1.6 0.9
Communication 12394 1.3 1.6 0.4
Maps, Travel & Transport 5984 0.6 0.0 0.0
Search Box 5099 0.5 0 0
Productivity 4780 0.5 0.2 0
Education 4623 0.5 0.9 0
Calendar 3050 0.3 1.6 0
Media & Video 1513 0.2 0 0
Other 1315 0.1 0.1 0
Music & Audio 1042 0.1 0.1 0

Table 4. Top 15 app categories ranked by number of keystrokes.
Columns show the ratio of suggestion picks and auto corrections to
keystrokes, respectively. The highest ratios are highlighted in bold.

Text Deletion
Overall, 8.9 % of non-redacted keystrokes hit the “delete” key
(7.6 % for two thumbs, 9.0 % for right index, and 11.3 % for
right thumb). Other postures were used too rarely for a mean-
ingful analysis. The ratio of “delete” presses was significantly
higher for people who used auto correction (N = 16, M = 0.11,
SD = 0.04) than for those who did not (N = 14, M = 0.06,
SD = 0.02) (Mann-Whitney U test, U = 164, p < 0.005).

App Context
Table 4 summarises typing for the top app categories. Broad
categories were taken from the Google Play store5. They were
manually refined to be more meaningful (similar to e.g. [10]).

People used suggestions most often in messengers and other
communication apps, as well as calendars and shopping apps.
In contrast, few suggestions were picked in maps and trans-
portation apps. This may be explained by more specific vocab-
ulary, not in the dictionary (e.g. location and station names),
compared to, for example, a chat context. Additionally, such
apps often offer their own GUI elements for suggestions (e.g.
based on previously selected locations and routes), which
make suggestions shown by the keyboard obsolete.

Likely for similar reasons, auto correction occurred most often
in messengers and shopping apps, and (almost) not at all in
other categories, again including maps and transportation.

5https://play.google.com/store, accessed 5th September 2017.

https://play.google.com/store


Typing Individuality and Biometrics
Following related work [14], we evaluate individuality of typ-
ing behaviour by measuring how well we could distinguish
users based on typing characteristics. For this, touch locations
were normalised by screen size, as in related work [2, 20].

Keyboard adaptation typically models individual behaviour
with Gaussians per key (e.g. x,y touch distribution [6, 29, 30,
65]). We thus evaluate individuality using such a Gaussian key
model to represent each user. We also evaluate a transition
variation of this model, which models behaviour per key-to-
key transition, as commonly used in keystroke biometrics [57].

For each participant p ∈ P we train such a model mp on the
training part of p’s data. We then feed the testing part of p’s
data to this model, which predicts probabilities for p (ideally,
they would be high). For each other user q ∈ P\{p} we feed
the testing part of q’s data to the model mp, which again
predicts probabilities for p (ideally, they would be low). We
use ten-fold cross validation to train and test on different parts
of each participant’s data in this procedure. We report mean
receiver-operating-characteric area-under-curve (ROC AUC)
and equal error rate (EER) of those folds. This is a standard
evaluation method for typing biometrics [57]. Hence, these
evaluations also demonstrate that such analyses are indeed
possible on data collected with our tool and concept.

Table 5 shows results for different features (“drags” are x and
y distances between touch down and up; “offsets” describe x,
y distances between touch up and key centre). An AUC value
of 0.5 is random guessing, 1.0 denotes perfect user separation.
The measured values thus show that finger placement is highly
user-speficic: touch location and offsets have an AUC above
0.9 and outperformed temporal features.

Moreover, Table 6 shows the results for transition models
split by hand posture, limited to the two postures that were
used regularly enough by the largest subsets of people for a
meaningful analysis. The ranking of features is the same for
both postures. Direct posture comparisons are difficult due to
different subsets of users, but the results indicate generally
higher individuality for two thumbs than right thumb. This
matches related work for typing in the lab [13].

To check if different devices bias the results, we repeated our
analyses for the largest subset with the same screen size and
aspect ratio (N=8) and with the same device model (N=3). For
the first group, the only possible remaining device influence is
thus due to the specific device model. However, for our sample
(all smartphones), we expect physical screen size to be the
most dominant device-related influence on typing behaviour.

For both subsets, we still measured high individuality (same
size – AUC: 0.90, EER: 11.43%; same device model – AUC:
0.99, EER: 1.67%; all with transition models and touch loca-
tions; compare to Table 5). Thus, following related work [2,
20], normalising spatial features by screen size ensured that
device size differences yielded no considerable information.
We thus conclude that our analyses show individuality of user
behaviour, not device-specific influences.

Feature key model transition model
ROC AUC EER (%) ROC AUC EER (%)

touch location 0.92 14.85 0.92 15.40
offset x, y 0.91 14.74 0.92 15.48
drag x, y 0.60 42.37 0.60 43.10
intra key time 0.73 30.31 0.70 34.07
inter key time 0.59 42.94 0.64 39.15

Table 5. Individuality of typing features. This table shows ROC AUC
scores and equal error rates (EER) per feature, obtained when observ-
ing 150 keystrokes, for both 1) unigram models (modelling keys) and 2)
bigram models (modelling key transitions).

Feature right thumb (N=25) two thumbs (N=20)
ROC AUC EER (%) ROC AUC EER (%)

touch location 0.80 26.15 0.93 14.26
offset x, y 0.80 26.04 0.93 14.66
drag x, y 0.60 43.11 0.61 42.11
intra key time 0.68 38.12 0.69 36.18
inter key time 0.56 44.70 0.56 42.76

Table 6. Individuality of typing features for different hand postures (with
transition models after 150 keystrokes).

I often used the private mode.

I always remembered to activate private mode
when I wanted / would have wanted it.

I always remembered to activate private mode
when I gave the device to someone else.

I often forgot to deactivate the private mode again.

By having the private mode option,
I felt that my privacy was protected.

The private mode is important.

disagree rather disagree undecided rather agree agree

Figure 7. Likert question results on manual use of the private mode.

My privacy was protected by the filter.

The filter is important.

I would have preferred it if less data
had been collected.

I would agree to collecting more data.

disagree rather disagree undecided rather agree agree

Figure 8. Likert question results on the n-gram filter used in the study.

PERCEPTION OF DATA COLLECTION

Private Mode
Manually activating the private mode (Figure 4) accounts
for 12 % of its activations; 88 % were automatic activations,
mostly due to password fields (48 %) and phone number fields
(20 %). Figure 7 shows that people rarely forgot to deactivate
private mode, yet not always activated it if they would have
liked to do so. However, the vast majority found it important
and felt protected. We asked similar questions about automatic
activation: 87 % felt protected by it, and all found it important.

n-gram Filter
The post-study questionnaire explained the n-gram filter again.
Figure 8 shows the related questions: Almost everyone felt
protected by the filter and rated it as important. 13 % of par-
ticipants would have preferred it if the app had collected less
data, while 23 % would agree to the collection of more data.



DISCUSSION

Respecting Privacy and Related Risks
Our proposed data filters are aimed at facilitating privacy-
respectful studies, but not at protecting people from malicious
attackers. Besides such attacks, if one tries, sometimes spe-
cial words might still be guessable in context. For example,
observing an n-gram like “fac” in a browser app likely indi-
cates “facebook”. We argue that intrusiveness in this case is
comparable to the common logging of app names in studies.

We rely on other apps’ text entry field labels to automatically
activate private mode. At least popular apps provide these la-
bels rather consistently, since they are required by accessibility
standards (e.g. to read out GUIs for blind users).

People manually used our private mode infrequently, but al-
most everyone rated it important and felt protected by it. We
conclude that participants should be granted such an option
to pause data collection from time to time. Our private mode
button was always visible, yet some said they did not always
remember to use it, which shows that our automatic activation
(e.g. for passwords) is also important. The button could be
placed more obtrusively, but this might cause distraction or
annoyance, hinting at a trade-off to be explored in the future.

Potential Keyboard-specific Influences
As outlined in the study limitations section, replacing the
keyboard app may introduce several effects on the resulting
behaviour. To minimise those, we configured our app to match
participants’ usual settings (e.g. haptic feedback on/off) on
an individual basis. However, we could not adjust the visuals.
For example, different key sizes or border widths compared
to a user’s usual keyboard might affect finger placement and
error rates. Different underlying keyboard algorithms and dic-
tionaries likely also play a role. While algorithms of (closed-
source) apps are hard to replicate, we plan to enable visual
customisation. Studies could then also replicate the visuals of
participants’ custom keyboards, not only the Google one.

Many Variables are Measurable on Mostly Redacted Data
To respect privacy and increase trust, we omitted text-revealing
information for most logged events. Despite this redaction,
many analyses were possible, including typing activity, speed,
and biometrics. However, we could not measure error rates.
While this is possible for some composition tasks (e.g. judge-
ment of crowd workers [61]), we recorded random trigrams,
which a human observer cannot “correct” post-hoc. A future
version could assess errors directly on the device with a dic-
tionary (similar to [24]), for example storing error counts.
Nevertheless, free text composition enabled us to examine
everyday use of suggestions and auto correction. Reflecting
on our analyses and participants’ feedback, we conclude that
the trigram filter was a suitable choice for our study.

Observations on “Smart” Keyboard Features
Only 16 people used auto correction (also on their usual key-
boards), yet 27 used word suggestions. Some said that they
disliked auto correction since it was often wrong. Our logged
data supports this – users of auto correction had significantly

higher ratios of delete key presses than those not using it. Oth-
ers mentioned that they did not often use suggestions, but that
they keep them activated since they do not interfere with typ-
ing. Hence, we explain the observed difference in popularity
with the features’ different levels of control: Suggestions are
presented for selection by the user, while corrections happen
automatically. Weir et al. [62] summarised disadvantages of
this loss of control and proposed a method for users to control
the “aggressiveness” of correction via touch pressure. Our
results with everyday typing highlight the importance of such
research to increase utility and acceptance of auto correction.

Comparison to Related Studies
Goel et al. [27] measured 31.1 WPM for their WalkType key-
board with transcription in the lab while sitting and walking.
Their ContextType keyboard [28] had 27.5 WPM, again with
lab transcription. Kristensson and Vertanten [41] list a ranking
of these and other keyboards. Our results fit into the mid to
fast end, yet note that direct comparisons are limited by study
differences (e.g. task, phone, keyboard).

To help relate these results, it is also worth noting that we
observed rather experienced typists. People might also use
different speed-accuracy trade-offs in casual everyday typing
(e.g. messaging), compared to what might be perceived as
more “formal” settings like a lab study or a field study with
dedicated text entry prompt. To investigate this further, more
studies of free text composition in the wild are required, which
we hope to facilitate with our logging concept and app.

Here, we refine the picture per hand posture: Azenkot and
Zhai [5] studied different postures in the lab. Matching our
results, they also found that typing with both thumbs was faster
than using one. However, their participants were overall faster
(e.g. for two thumbs 50 WPM vs our 36.8 WPM), likely due to
the different setups (lab vs wild, transcription vs composition).
This is supported by Reyal et al. [52], who also reported that
typing with both thumbs in the lab was faster compared to
the field (35-40 WPM vs 30-34 WPM). Finally, our posture-
specific speeds match the order reported by Goel et al. [28]
(two thumbs > right thumb > right index finger).

Regarding posture popularity, typing with both thumbs was
the most used posture in our study, whereas participants of
Azenkot and Zhai [5] reported more balanced use. Fittingly,
our participants’ self-reports in the initial questionnaire under-
estimated two thumbs use. This shows the value of assessing
such data via our keyboard’s ESM module in-situ, not (only)
as a questionnaire detached from everyday typing situations.

Natural Keyboard Use is Highly Individual
We found great individuality in keyboard use. For example,
one person typed relatively little (and slowly) and used sugges-
tions almost six times as much as others. Another one typed
in landscape mode for a sixth of the time, while most others
almost never typed in this orientation. While the majority used
both thumbs most of the time, some strongly preferred differ-
ent postures, such as typing with the index finger. Different
daily routines resulted in diversity in typing activity through-
out the day. Overall, we conclude that capturing behavioural
diversity is a strength of studying free text typing in the wild.



Insights into Touch Typing Biometrics
Regarding behaviour features used in keyboard adaptation
and typing biometrics, we found that finger placement was
more characteristic and consistent than typing rhythm. This
difference is in line with results for typing in the lab [13, 35],
yet it is even more pronounced for our data. Presumably typing
rhythm is less robust under the noise of varying everyday
contexts and interruptions, compared to finger placement.

The importance of finding novel biometric features for mobile
touch typing was highlighted by related work [18, 57]. For
the first time, our results quantify the benefit of such features
for everyday typing in the wild with free text composition,
including different hand postures and user models. Based on
our results, we recommend to use touch locations/offsets for
mobile typing biometrics.

Opportunities for Further Studies
As outlined in the related work section, we see several mo-
tivating areas of mobile keyboard research. Here we discuss
ideas for further studies and application scenarios of our app
as a research tool in these areas.

Collecting behaviour data for context-aware keyboards: Fol-
lowing related work on context-aware keyboards (e.g. adapting
to walking [27] and hand postures [28, 65]), researchers could
use our app to gather typing and sensor data from varying
real-world contexts. Our keyboard’s ESM screen could be
adapted to help with labelling this data (e.g. walking). This
data could then inform future context-aware keyboards and
their underlying models.

Evaluating keyboard designs in the wild: Looking ahead, re-
searchers could modify the presented keyboard in our app
(also see future work section) to study the impact of design
choices under different real-world contexts, using our data
logging. This could include both simple visual properties (e.g.
colours, sizes) as well as functional modifications. For exam-
ple, based on our results, we could investigate adding a second
row of suggestions, as a novel trade-off between screen space
and saved typing effort.

Observing keyboard learning behaviour in the wild: Our app
could observe how users’ behaviour develops as they learn to
type with a new layout. This might involve completely new
layouts, switching to a different language layout, or layout
modifications (e.g. key swaps [9]). The collected data could
help to develop new training schemes or further inform models
of keyboard learning [36].

Investigating novel keyboard biometrics: Referring back to the
example questions in the introduction, our app could further
evaluate individual typing behaviour. Our results in this paper
contribute insights into the real-world power of spatial and
temporal typing features for biometrics. Beyond this, future
studies could evaluate if users can be identified based on other
keyboard-related behaviour that is particularly interesting to
study in the wild. For example, novel keyboard biometrics
might recognise users also based on the use of suggestions, the
way they delete text, app-specific typing behaviour, or even
the filtered logging data itself (e.g. n-gram distributions).

CONCLUSION
Mobile touschreen typing has mostly been studied in the lab
with transcription tasks. To facilitate free text entry studies
in the wild, we developed a logging concept and keyboard
app. A survey (N=349) assessed views on related privacy
filters. We deployed our app in a three-week field study (N=30)
and presented the first analyses of keyboard use and typing
biometrics in free text composition in the wild, including
speed, postures, apps, auto correction, and word suggestions.

Finally, is it worth the effort for researchers to collect typing
data from free text composition in everyday life? We believe
the answer is yes, it is a valuable additional method. As the
HCI community follows diverse research interests with regard
to text entry, the study choice should be aligned with those:

The lab transcription task is practical if one is mainly inter-
ested in speed and error rates, for example to compare a novel
text entry method to a baseline. However, as related work
showed [52], these tasks should also be conducted in the field.

On the other hand, our study showed individual differences:
For example, a lab study might enforce a fixed (common) hand
posture, but we found that some people prefer other postures
than the majority. Similar observations hold for device orienta-
tion, use of word suggestions, and typing activity throughout
the day. Moreover, users’ favourite posture in our question-
naire differed from the one they actually reported most often
while typing. Our results also suggest that the biometric value
of typing behaviour shows in different features in free typing
in the wild compared to transcription in the lab.

In conclusion, we see great value in studying unconstrained
typing in users’ daily lives to capture user-specific behaviour.
This fits research agendas on adaptive and personalised key-
boards and on typing biometrics. Moreover, such data may
help to address the challenge of designing for special user
groups and varying contexts of use [39, 40]. By releasing our
app and dataset, we hope to support these research endeavours
and to encourage further studies of this kind:

http://www.medien.ifi.lmu.de/research-keyboard

FUTURE WORK
We plan to extend the tool further, for example to count
whitelisted word occurrences on the device for studies of lan-
guage use. This could extend recent work on smartphone use
in psychology [56]. Moreover, we are working on an API for
easy (and remote) configuration of keyboard GUIs (layouts,
key sizes, etc.), for example to study alternative layouts and
visuals with our app. The concept of sampling random subse-
quences could also facilitate privacy-respectful collection of
other kinds of user data (e.g. location or fitness timeseries).
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