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ABSTRACT
We present ProbUI, a mobile touch GUI framework that
merges ease of use of declarative gesture definition with the
benefits of probabilistic reasoning. It helps developers to han-
dle uncertain input and implement feedback and GUI adapta-
tions. ProbUI replaces today’s static target models (bounding
boxes) with probabilistic gestures (“bounding behaviours”).
It is the first touch GUI framework to unite concepts from
three areas of related work: 1) Developers declaratively define
touch behaviours for GUI targets. As a key insight, the dec-
larations imply simple probabilistic models (HMMs with 2D
Gaussian emissions). 2) ProbUI derives these models auto-
matically to evaluate users’ touch sequences. 3) It then infers
intended behaviour and target. Developers bind callbacks to
gesture progress, completion, and other conditions. We show
ProbUI’s value by implementing existing and novel widgets,
and report developer feedback from a survey and a lab study.
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INTRODUCTION
GUIs today define targets as rectangles, but touch is often dy-
namic (e.g. slide [37, 55], cross [2, 40], rub [45], encircle [14,
27]). This box model is also challenged by ambiguity: If a fin-
ger occludes two buttons, it is unclear if the user really wants
to trigger the one whose box includes the touch point (x,y),
especially if the finger moved, willingly or due to mobile use.
Research addressed this with probabilistic touch GUI frame-
works [26, 34, 35, 48, 49, 50], which offer attractive benefits:

Reasoning under uncertainty: While a touch missing all
bounding boxes (even slightly) is ignored, probabilistic GUIs
may react by inferring a user’s most likely intention (e.g. [9]).

Continuous feedback: This can close the control loop between
user and system [54]. For example, visualising each target’s
activation probability (e.g. via opacity) reveals the system’s
current belief about the user’s intention.
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Figure 1. Basic example of using ProbUI to develop a novel widget that
probabilistically reacts to different touch behaviours: (a) ProbUI offers
a declarative language to represent GUI targets via gestures (“bound-
ing behaviours”). Developers also define rules on these behaviours and
attach callbacks. (b) ProbUI derives probabilistic gesture models from
these declarations. (c) During use, it evaluates each behaviour’s proba-
bility. The likelihood of a target’s set of behaviours yields its activation
probability, used to reach decisions and trigger callbacks. Developers
can use the probabilities for reasoning, feedback, and GUI adaptations.

GUI adaptation: Instead of triggering actions based on touch-
in-box tests, probabilistic representations enable mediation
(e.g. [35, 50]), for example via presenting previews, alterna-
tives, or opportunities for users to cancel or clarify input.

Since GUIs today use boxes (e.g. Android1, iOS2, web3), they
cannot assign to inputs any probabilities. To still use proba-
bilistic GUI frameworks, developers thus first have to provide
probabilities, for example from probabilistic gesture recog-
nisers. However, these are not directly integrated into GUIs
and require training data or external editors [1, 7, 13, 31, 32,
33]. Gestures can also be easier specified via declaration, yet
this does not yield probabilities [28, 29, 30, 46]. To facili-
tate creating probabilistic GUIs, we propose a concept that
merges ease of use of declarative gesture definition with ben-
efits of probabilistic reasoning (Figure 1). We contribute: 1) a
concept to represent GUI targets via gesture models instead of
static geometry tests; 2) a declarative language to define such
gestures, with a method to automatically derive probabilistic
models; 3) an implementation of our approach in Android.

1http://developer.android.com/guide/practices/ui_guidelines/widget_design.html#anatomy
2https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIView_Class/index.html
3http://www.w3.org/TR/CSS21/box.html, all last accessed 21st September 2016
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APPROACH: INTEGRATING THREE KEY AREAS
ProbUI is the first probabilistic touch GUI framework to inte-
grate three related areas into a single system: 1) defining touch
behaviours declaratively, 2) evaluating them probabilistically,
and 3) inferring intention from such probabilities.

1) Defining input behaviour: Developers define one or more
“bounding behaviours” (BBs) per GUI element. Our novel
approach then automatically derives probabilistic gesture
models from the developers’ non-probabilistic definitions.

2) Evaluating behaviour: These models generalise previously
used target representations (boxes, single Gaussians) from ar-
eas to areas over time, and from one to many behaviours: For
example, a widget might react (differently) to taps and slides.

3) Inferring user intention: ProbUI infers intention, for exam-
ple to allow the most likely widget to trigger an action asso-
ciated with its most likely BB. It also offers callbacks on ges-
ture progress, completion and context (e.g. speed, pressure,
touch size). This helps developers to create suitable reactions,
in particular via continuous feedback and GUI adaptations.

RELATED WORK
We discuss the three main related areas and how ProbUI ad-
dresses open challenges by adopting and integrating their key
concepts into one pipeline.

Defining Touch Gestures Declaratively
Strengths: Ease of Use of Declarative Gesture Specifications
In declarative gesture frameworks [28, 29, 30, 46], developers
create gestures by describing them. For example, Proton [29,
30] uses regular expressions composed of tokens like touch
down/move/up. This offers a concise and relatively easy-to-
read way of creating gestures, and does not require training
data. We follow this approach motivated by this ease of use.

Challenges: Behaviour Variations and Uncertainty
Declarative frameworks generally do not provide probabili-
ties [28, 29, 30, 46]. This makes it hard to react to varying
behaviour, uncertain intention, and to give live feedback on
potential outcomes. Proton thus asked developers to manually
implement “confidence calculators” [29, 30]. This motivates
our approach: We automatically derive probabilistic models
from declarative statements to provide input probabilities.

ProbUI: Declarative Language that Implies Prob. Models
In contrast to Proton, we use gestures as part of defining a
GUI, not the GUI as a part of defining gestures: For example,
Proton shows a gesture “drag the star” [29, 30]. In ProbUI we
would attach a “drag” to the star itself. In other words, we de-
fine gestures relative to GUI elements. This enables us to infer
parameters of a probabilistic model for said element. More-
over, callbacks for feedback and adaptation logic are thus en-
capsulated in the widget (e.g directly in the “star” class).

Evaluating Touch Gestures Probabilistically
Strengths: Handling Behaviour Variations and Uncertainty
Given input events, probabilistic recognisers evaluate a set of
(learned) gestures (e.g. [1, 7, 13, 32, 33]). We follow such
approaches to enable our BBs to handle behaviour variations
(e.g. varying trajectories for a sliding behaviour).

Challenges: Efforts for Model Creation and GUI Integration
Probabilistic recognisers require training data (e.g. [1, 7, 13])
and some employ interactive editors to enable capturing even
highly complex gestures [31, 32, 33]. In contrast, we use ges-
tures associated with GUI targets, which are relatively sim-
ple as related work shows (e.g. cross [2, 40], slide [37, 55],
rub [45], encircle [27]). With this focus, we offer a declara-
tive language for “in-line” use in GUI setup, without external
editors, code ex/imports, or training data – yet our approach
still yields (simple) probabilistic models, as described before.

ProbUI: Method to Derive Prob. Models from Declarations
In summary, probabilistic recognisers handle varying be-
haviour, but lack direct GUI integration, and creating gestures
is often less simple than with declaration. To address this,
ProbUI derives probabilistic models from non-probabilistic
declarations. Hence, GUIs account for behaviour variations,
yet developers do not need to be probability experts.

Inferring User Intention from Touch Input

Strengths: Understanding User Intention in Touch GUIs
Probabilistic touch GUI frameworks help to understand user
intention, given input probabilities [48, 49, 50]. We also con-
duct such “mediation” to infer intended behaviours and GUI
targets – by evaluating the probabilistic models of our BBs.

Challenges: Obtaining Probabilities for Mediation
Probabilistic touch GUI frameworks so far mostly assumed
existing input probabilities [48, 49, 50], without directly sup-
porting developers in implementing methods to obtain them.
Hinckley and Wigdor [22] recently concluded that ”a key
challenge for [uncertain] input will be representation” and
“how to make this information available to applications”.

For example, beyond taps [47], scoring input is often infor-
mally outlined: For sliders, Schwarz et al. [48] state that “se-
lection score depends on the distance [...] in addition to the
direction of motion”. Other work [50] described representing
scrolling “using simple gestural features” without formal de-
tails. While these tools support many interactions “by varying
the method for determining the selection probability” [47],
developers gained no recipes to do so. We address this lack of
support with our combination of declarative gestures creation
and automatic derivation of underlying probabilistic models.

Work on sampling [49] enabled deterministic event handling
of probabilistic input. Since in its first step it “takes a proba-
bilistic event”, it required external models, like gesture recog-
nisers, “called repeatedly after each new input event”. This
motivates our method, which avoids external gesture models
by deriving them directly from the developer’s specified BBs.

ProbUI: Merging Modelling and Mediation
ProbUI is the first touch GUI framework to provide develop-
ers with both 1) a declarative way to describe how to obtain
input probabilities for GUI targets; and 2) a system to handle
these probabilities to infer user intention. With this integra-
tion we aim to streamline probabilistic GUI development, for
example avoiding transfer of input events and resulting prob-
abilities between GUI, mediators, and external recognisers.



Bounding Behaviours (BBs)
We now motivate our central concept in light of related work.

Motivation: Many Widgets Require Touch Gestures
Many widgets do not match the simple box model, but rather
observe input over time: sliding [37, 55], encircling [14, 27],
crossing [2, 40], rubbing [45], double taps [21], and so on.
This lack of a sequential/temporal dimension in current target
representations motivates our generalisation to BBs.

BBs Facilitate Implementing Gestures for GUI Elements
Linking gestures to GUI targets is inspired by Grafiti’s [15]
“local gestures” for specific areas (e.g. a widget’s visuals).
Grafiti allows developers to implement recognisers for new
gestures, but does not directly help with creating these, in
contrast to our work. Grafiti also considers gesture confi-
dences as optional, while deriving them is at our focus.

BBs Provide Probabilistic GUI Representations
Touch targets are often modelled as 2D Gaussians [3, 8, 9,
48, 51], mostly for keyboards (e.g. [3, 17, 19, 56]), but less
so for general touch GUIs, as in ProbUI. In contrast to the
related work, we use multiple connected Gaussians per target
in a touch sequence model (i.e. a Hidden Markov Model).

BBs Allow Widgets to Distinguish Multiple Behaviours
Defining multiple BBs per target is motivated by work such
as Sliding Widgets [37] and Escape [55]: Their targets can
receive – and decide to accept or deny – different types of be-
haviour, namely slides in different directions. Moreover, mul-
tiple behaviours support different preferred interaction styles,
and may cater to contexts and constraints, like casual use [41],
walking [6, 38], impaired sight/precision, or thumb use [5].

BBs Support Multiple Behavioural Components
FFitts’ Law [8] has two components (Gaussians for precision
and speed-accuracy tradeoff) to define one behaviour (tap)
and score targets [9]. Our BBs support using such concepts in
GUIs. For example, following FFitts’ Law and its parameters,
we could define two single-Gaussian BBs for a set of buttons.
ProbUI then scores these targets based on both (like [9]).

FRAMEWORK OVERVIEW

Architecture
ProbUI is structured into four layers, motivated by the typical
process of development and runtime input handling in GUIs:

Layer I is used by developers to define bounding behaviours,
and callbacks that allow widgets to react to them.

Layer II updates each BB’s probability (small dots in Fig-
ure 2) of being performed by the user, regardless of whether
the user intends to use the associated GUI element at all.

Layer III updates each GUI element’s probability (large dots
in Figure 2), expressing the system’s belief that the user cur-
rently indeed intends to activate this widget.

Layer IV “manages” the system by: 1) distributing events
to interactors and behaviours; 2) triggering callbacks; and 3)
mediation – deciding if and which interactor(s) may trigger.

Figure 2. ProbUI overview with example: A developer wants to imple-
ment a button with several bounding behaviours (top left). She 1) creates
a GUI (Android: Java, XML), and defines 2) behaviours and 3) rules (in
PML) with 4) callbacks (Android: Java). Our PML interpreter takes her
input (e.g. slide: Ld->Ru) to 1) create probabilistic models for her BBs,
2) sets up her rules (e.g. slide on complete) with her callback refer-
ences, and 3) stores the implied touch sequence patterns (e.g. “start with
down on the left side, end with up to the right”). During use (top right),
a manager distributes input events (dashed arrows) to all widgets, to be
evaluated by their BB models. Resulting behaviour scores (small dots)
are reported back up to derive target scores (large dots). Both can be
used in callbacks (e.g. for feedback such as highlighting), and inform de-
cisions by the mediator. Each BB model further infers a most likely state
sequence for the given input. These sequences are matched against the
stored patterns and rules to decide which callbacks to notify.

Probabilistic Model Overview
We introduce the formal variables used in the next sections:
A user’s input gesture is a sequence of n touch locations, t =
t1t2...tn. A GUI has a set of GUI elements E. Each element e∈
E has a set of bounding behaviours Be. Each behaviour b ∈ B
is attached to only one element: ∀e, f ∈ E,e , f : Be∩B f = /0,
and B =

⋃
e∈E Be denotes the set of all behaviours of the GUI.

Note that multiple behaviours bi may of course represent the
same kind of gesture (e.g. slide right), but each bi is attached
to a different element.

Our model is given by this factorisation of the joint distribu-
tion over touch sequences t, behaviours b, and elements e:

p(t,b,e) = p(t|b)p(b|e)p(e) (1)

• p(t|b) denotes the probability of a touch sequence t given a
behaviour b. It is modelled with one HMM per behaviour.
• p(b|e) denotes the probability of a behaviour b given an

element e. We define that p(b|e)> 0 only if b∈ Be (i.e. if b
is attached to e). Per default, p(b|e) is uniform for a given
e and b ∈ Be. Developers may change this.
• p(e) denotes the prior probability of an element e before

observing interactions. Per default, all elements are equally
likely (p(e) is uniform). Developers can change this.

Using this model and the rules of probability, ProbUI in-
fers two distributions from observed touch input: p(b|e, t) the
probability of behaviours per element (how targeted?); and
p(e|t), the probability of the elements (what targeted?).

The next sections explain in detail 1) how developers specify
this probabilistic model implicitly via our declarative gesture
language, and 2) how ProbUI then conducts inference.



LAYER I: BOUNDING BEHAVIOURS
Bounding behaviours can be created in four ways: 1) using
a preset, 2) defining them in ProbUI’s Modelling Language
(PML), 3) setting the underlying model by hand, or 4) learn-
ing it from data. In this paper, we focus on creation via PML
for the “default” cases 1) and 2), and consider learning from
data as future work. First we describe the probabilistic model
that underlies each behaviour, then we explain how ProbUI
can automatically map from PML expressions to this model.

Bounding Behaviours’ Underlying Probabilistic Model
Touch can be imprecise, for example due to finger pitch and
roll [23] and perceived input points [24]. Intended touch lo-
cations are thus different from the device’s sensed locations
[12, 20, 52, 53]. To handle this uncertainty, touches t for GUI
elements e can be modelled as 2D Gaussians p(t|e) [18, 51],
as often used to replace bounding boxes (e.g. [17, 19, 56]):

p(t|e) =N (µe,Σe),with mean µe and covariance Σe (2)

To generalise from touch areas to sets of touch sequences, we
replace the Gaussian (Eq. 2) with one or more gesture mod-
els. Each uses one or more Gaussians, linked by transitions
over time: a Hidden Markov Model (HMM) [4, 43]. We chose
HMMs since 1) they are a well-established model for ges-
tures and 2) they are simple enough to be related to bounding
boxes rather directly (Figure 3). This helps to realise an un-
derstandable mapping from the declarative language (PML)
to the probabilistic model (HMM).

PML: Declarative Statements Define Probabilistic Models
PML merges the best of two worlds: readable declarative ges-
ture definition, and handling behaviour variations via proba-
bilistic models. It offers gesture declaration like Proton [29,
30], plus rules like Midas [46] and GDL [28]. In contrast to
prior work, PML also yields probabilistic models (without re-
quiring developers to think about this and without training
data). For HMMs, the system thus needs to infer states, tran-
sitions, and starting probabilities from the developer’s PML
expression. The following paragraphs explain this mapping.

As a simple running example4, we create a button that counts
the number of times a user crosses it vertically [2]:
public class MyButton extends ProbUIButton {
// Called by the manager when setting up the GUI:
public void onProbSetup() {
// Add a bounding behaviour to this button:
this.addBehaviour("across: N->C->S");
// Add a rule with callback:
this.addRule("across on complete",
new RuleListener() { public void onSatisfied() {
counter++;

}});
}
... // rest of the class

Declaring Touch Areas 7→ Probabilistic Model States
Table 1 shows PML’s core components. In contrast to Proton,
a PML expression is linked to a GUI element. Hence, touch
locations are interpreted relative to the element. This strongly
supports the analogy to bounding boxes when using this nota-
tion. For example, the default meaning of N in PML is “north
of the widget’s visual bounds” (Figure 4).
4We show Android/Java code and highlight relevant parts.

a) c)b) d)

Figure 3. Intuition for replacing bounding boxes with distributions: (a)
A box describes an area to touch to activate an element. (b) Similarly, a
slide may be detected with two boxes, triggering if a touch down occurs
in the left box, followed by an up event in the right box. (c) Intuitively,
probabilistic models replace the box with a Gaussian. (d) HMMs gener-
alise this to multiple distributions (states), linked by transitions.
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Figure 4. Buttons with (a) PML’s area tokens and (b) examples with
resulting HMMs. Circles represent the HMMs’ Gaussian states with
two/three standard deviations, arrows indicate state transitions. Area to-
kens can also be stacked. For example, NN is twice as far north as N.

Expression Explanation

Touch Area Selectors
C area on the element (i.e. centred on its visual bounding box)
T, R, B, L sub-area centred at the top/left/right/bottom of the element or current area
N, E, S, W area to the north/east/south/west next to the element or current area
A[x=?,y=?,w=?,h=?] specify area directly with the given centre location and width and height

Area Size Modifiers
x, y, z, X, Y, Z shrink/enlarge area by half its width/height/both, e.g. “inner centre”: Cz
sx, sy, s scale area width/height/both, e.g. C[sx=2] (twice as wide), or C[sx=100dp]

Area Transitions
-> finger moves from one touch area to the next, e.g. from left to right: L->R
<-> finger moves between two touch areas, e.g. horizontal rubbing: L<->R

Touch Event Type Filters
d, m, u a down/move/up event occurs at the current area, e.g. tap on button: Cdu
*, + zero-or-more/one-or-more such events occur, e.g. lift on button: Cd*u

Gesture Progress Markers
$ gesture progress notifier, e.g. Cd$u fires callback after down but before up
[Area Selectors]. gesture end marker, e.g. rubbing has to end on the right: L<->R.
.[Area Selectors] gesture start marker, e.g. rubbing should start in centre: L<->.C<->R

Other
[name]: name tag (e.g. tap: Cdu), can be referenced in rules (Table 2)
O set gesture origin at first touch down, e.g. horizontal rub anywhere: O<->E

Table 1. Core parts of PML for defining bounding behaviours.

Thus, declaring a touch area in PML also defines a location
and size for a state in the HMM, namely a 2D Gaussian. By
default, the “size” is chosen as shown in Figure 4, motivated
as a “pessimistic” version of the standard error rate aimed at
in Fitts’ Law tasks [57]. Developers can fully change this. In
our example (N->C->S), the PML interpreter will thus create
three states: one above the button (N), one centred on it (C),
and one below it (S), as shown in Figure 4.

As a side-note, PML also provides an “origin” token (O, Ta-
ble 1) to interpret areas relative to the gesture’s start instead
of the widget’s centre. This is used to define behaviours such
as “rubbing anywhere on the widget” (see example section).

Declaring Finger Movements 7→ Prob. Model Transitions
We define gestures by chaining touch areas via transitions
(Table 1). Hence, declaring finger movements in PML also
defines state transitions in the HMM: Our interpreter sets
non-zero weights for the transitions in the PML statement. It
also stores these developer-specified transitions for later rule-
checking. It then applies a Laplace correction to the HMM’s



transitions so that all states are connected. Otherwise, the
model could only ever output one most likely state path (e.g.
downwards crossing in our example), regardless of how un-
likely that is (e.g. user actually moves the finger upwards).

Declarative Order 7→ Probabilistic Model Starting States
States in an HMM have starting probabilities [4, 43]. By de-
fault, our PML interpreter sets a non-zero starting probability
for the first (leftmost) state in the expression, and for the rule-
system considers the last (rightmost) state as an end-state.

If there are only two-way transitions (<->), the interpreter
considers both first and last state as start and end states (e.g.
a rubbing gesture L<->R may likely start at either end). How-
ever, this can be fully altered with the “.” token (Table 1).

The interpreter stores the developer-specified start/end states
for rule-checking. As for the transitions, we internally apply
a Laplace correction to ensure that the HMM can output more
than one hypothesis about the most likely starting state.

Evaluating PML Expressions
At runtime, ProbUI performs both probabilistic inference
and deterministic rule-checking to provide developers with a
maximum of information on the user’s ongoing interactions.

Probabilistic Inference: Continuous Feedback & Adaptations
Given a touch event stream, ProbUI uses the derived HMMs
to infer the input’s probability and its most likely state se-
quence, using the Viterbi algorithm [4, 43]. Input probability
describes how well current touch events match the model’s
“expectations” (i.e. its states and transitions), regardless of
gesture progress/completion. For example, our crossing but-
ton may already return high probability once the finger is
placed above the button (N), since crossing (N->C->S) ini-
tially expects touches there. Developers can use this informa-
tion, for example, to provide live feedback, such as previews
about likely consequences of completing the ongoing action.

Deterministic Rule-Checking: Triggering Reactions
Complementary, gesture progression and completion is anal-
ysed by checking the HMMs inferred most likely state se-
quence against the developer’s specified PML expression (Ta-
ble 1) and rules (Table 2). Developers bind callbacks to points
in a gesture, and to rule states (all updated continuously).

Checking rules: The rule across on complete in our ex-
ample triggers our callback when the probabilistically in-
ferred most likely sequence matches our defined sequence (N,
C, S) and has just reached a valid end state (S).

Checking progress: To already react to reaching the centre,
for example to play an animation, we can insert a notification
marker $ at that point (N->C$->S) and bind a callback to it:
// Add a behaviour with a progress notification marker:
addBehaviour("across: N->C$->S", new BehaviourListener() {
public void onUpdate(Notifier notifier) {
if(notifier.isJustReached(0)) //0: first marker
playAnimation(); }}); // do something

Checking touch event types: Event type tokens indicate that
a gesture is only complete if such events occur at the speci-
fied location in the right order. We could change our exam-
ple to Nd->C->Su to only count crossings which started by

Expression Explanation

and, or, not boolean and/or/not for sub-rules
[on|is] complete gesture has just been completed / is (already) completed
[on|is] most_likely gesture has just become / is this widget’s most likely one
in [>n|<n|m-n] [ms|s] gesture performed in the given amount of time
with [>n|<n|low|high] p gesture performed with the given mean touch pressure
with [>n|<n|small|large] a gesture performed with the given mean touch size
using [>n|<n|n|m-n] fingers gesture performed by the given number of fingers
[name]: name tag, can be referenced in rules

Table 2. PML expressions for defining rules on bounding behaviours.

touching down (d) above the button, and ended with the fin-
ger leaving (u) below it. In comparison, the previous version
also counted crossings as part of slides starting and ending
anywhere. Touch move events (m) are by default always al-
lowed, since it is likely that users move the finger even if they
just tap. Hence, a pattern like Cdu is interpreted as Cdm*u.

LAYER II: PROVIDING BEHAVIOUR PROBABILITIES
We have explained how BBs are created and evaluated. Now
we describe how ProbUI conducts this evaluation: While in-
teracting, layer two continuously evaluates all BBs of all GUI
targets. For each target, each of its BBs is assigned the prob-
ability of indeed being currently performed by the user.

For example, for a button that triggers by left/right slides (e.g.
[37]), layer two continuously updates the probabilities of the
user performing a left/right slide. These probabilities can in-
form feedback while sliding (e.g. transparent preview [48]).

We derive these behaviour probabilities with Bayes’ Rule [4],
as in similar procedures in probabilistic keyboards [17]. We
next explain its three components: prior, likelihood, posterior.

The prior p(b|e) defines relative importances of the BBs per
target e, meaning their probability before observing touches.
A uniform distribution is the default (i.e. all BBs of e equally
likely), but we may consider, for example, frequencies (e.g.
most used behaviour) or context (e.g. hand posture, walking).

The likelihood p(t|b) of a sequence of (the last) n touch
events t = t1t2...tn given the behaviour b is defined by:

p(t|b) = HMMb(t), (3)

where HMMb denotes the sequence evaluation function (see
e.g. [4, 43]) of the HMM that models the behaviour b. Using
Bayes’ Rule, we compute the posterior over behaviours b ∈
Be for target e, given the observed sequence t = t1t2...tn as:

p(b|t,e) = p(t|b)p(b|e)
∑

bi∈Be

p(t|bi)p(bi|e)
(4)

LAYER III: PROVIDING TARGET PROBABILITIES
Layer two evaluated how each target is likely used. Layer
three complementary derives which target(s) the user likely
intends to use. We again use Bayes’ Rule. The prior p(e) de-
fines the targets’ relative importances. It is a uniform distri-
bution by default (i.e. all equally important), yet could also
reflect usage (e.g. keyboards often use letter frequencies).

The likelihood p(t|e) of a touch sequence t given element e
is obtained by marginalisation over e’s behaviours bi ∈ Be:

p(t|e) = ∑
bi∈Be

p(t|bi)p(bi|e) (5)



Intuitively, a target e is thus more likely than another one if
its bounding behaviours Be altogether better explain the user’s
input t. With Bayes’ Rule, the probability of e for input t is:

p(e|t) = p(t|e)p(e)
∑

ei∈E
p(t|ei)p(ei)

(6)

Note the generalisation of target representations: Instead of a
binary point-in-box test, for each target we get a probability
(Eq. 6) based on a set of sequence models (Be in Eq. 5).

LAYER IV: MANAGEMENT AND MEDIATION
This “management” layer passes on the fingers’ touch events
to all elements, to be processed on layers three and two. It also
updates rules, triggers callbacks, and decides when to activate
which element (“mediation”). As GUI management is mostly
“bookkeeping” work, we here focus on explaining mediation.

We overall adopt mediation concepts from related work [34,
35, 48, 49]. This is also a plug-point for using ProbUI’s prob-
abilities in other frameworks, namely by extending/replacing
our basic mediator class. We describe this mediator next.

Tracking candidates: As touch events arrive, ProbUI updates
1) probabilities on layers two and three, and 2) our mediator’s
set of candidates. As long as a GUI target is more likely than
a minimum threshold, it holds candidate status. Candidates
can use their behaviour probabilities (layer two) and activa-
tion probability (layer three) to update feedback, like chang-
ing transparency, live result previews, and so on.

Activating candidates: Widgets can request “determination”.
A simple button would do so on touch up. Our mediator de-
termines the candidate with the highest probability (Eq. 6), or
the only one with a request. Alternatively, we can choose all
above a certain threshold to enable multi-selection (e.g. [37]).
All non-determined candidates are then “excluded”. Devel-
opers can use 1) their widget’s onDetermined() method to
perform lasting changes (e.g. a simple button would trigger
its associated action), and 2) their widget’s onExclude()
method for clean-up (e.g. removing visual feedback).

MODEL DISCUSSION AND LIMITATIONS
Search and simplicity: We apply the Viterbi algorithm to
search for most likely state sequences (see Figure 2). It has
complexity O(S2T ) [43] for S states and T touch events. Ex-
tending our approach to highly complex gestures with many
states and long touch sequences may require other search
methods, yet such complex gestures might not be a suit-
able choice for mobile touch GUIs regarding usability. In this
work, we are interested in gestures tied to GUI targets, which
are relatively simple and short, as our examples show, in-
cluding those from the literature. Thus, PML (without rules)
currently only supports direct specification of linear state se-
quences. This could be extended in future work, for example
by adding an alternation operator (“|”).

Utility: The framework currently offers no integration of util-
ity of actions. Future work could provide a way to assign util-
ity to outcomes, possibly via a utility parameter for callbacks.

Discrete time focus: By fixing the touch event rate, Proton++
allows developers to repeat symbols to extend gesture du-
ration in fixed steps [29]. In PML, we can specify (min/-
max) gesture durations. Both methods are clearly limited, in-
dicating that timing is more difficult to describe with fixed
symbols than space. Deriving probabilistic models from such
mainly spatial declarations thus leads to a lack of temporal
continuum (our HMMs place distributions in space). How-
ever, most gestures have discrete points of interest in space
(e.g. start/end, turns, repetitions) at which progress can be as-
sessed ($ marker, Table 1). Moreover, live feedback for GUI
elements – like highlighting (potential) targets – is usually
related to finger location or distance from targets, not speed.

Distributions: We limited the model to 2D Gaussians. They
are a suitable choice for modelling touch/target locations [17,
18, 19, 51, 56], and enable the direct boxes-behaviours anal-
ogy with our mapping from declarations to probabilistic mod-
els. However, other distributions – or further dimensions –
might be useful, for example, to consider features which we
currently excluded from the probabilistic model, although
they can still already be used in declarations (e.g. pressure).

Overall, limitations arise since we use simple models to 1) be
able to automatically derive them from declarations, and to
2) keep the analogy to bounding boxes, with which develop-
ers are already familiar. Ease of use of declarations may not
always be needed, for example when developers are deeply
involved with probabilistic modelling themselves. In such
cases, we recommend to consider general probabilistic pro-
gramming languages like Infer.NET [36]. While more power-
ful, they likely require extra initial development effort com-
pared to a more specific framework like ProbUI, which comes
directly integrated into an existing GUI toolkit (Android).

APPLICATION EXAMPLES
Considering the fundamental role of proof-of-concept imple-
mentations [25] and examples [16, 30, 34, 35, 48, 49, 50], we
show ProbUI’s value with 1) implementing behaviours from
the literature, and 2) new widgets (also see video5).

Examples I: Realising Behaviours from Related Work
Table 3 shows BBs for well-known touch interactions. We
next implement selected behaviours from related work.

Expression – Behaviour, Rule(s) Explanation and Example

Cd*u lift finger on widget [42]
Cdu tap on widget
with rule: on complete with large a tap with large contact area, e.g. FatThumb [11]
with rule: on complete in >600ms tap with long press
Cdudu double tap on widget
Ld->Ru slide left to right on widget; e.g. slide-to-unlock
L->R slide left to right over widget
L->C, R->C with and rule pinch gesture on widget (requires two fingers)
C->L, C->R with and rule zoom gesture on widget (requires two fingers)
Cd->Eu slide to right out of widget; e.g. drag to right [37]
C->E slide to right over widget; e.g. bezel swipe [44]
N->C->S vertically crossing the widget [2, 40]
N<->E<->S<->W<->N encircling the widget [14, 27]
N->E->S->W->N encircling the widget clockwise

Table 3. Examples of bounding behaviours defined in PML.

5http://www.medien.ifi.lmu.de/probui/video

http://www.medien.ifi.lmu.de/probui/video


Figure 5. Screenshots of implemented example widgets (fingers/arrows added): (a, b) This image viewer brings up one-finger zoom/rotate controls
(grey) on a vertical Ta-tap [21]. (c) Multiple toggles [37] are activated in one downwards stroke. Their alternating orientation also enables unambiguous
single selection via left/right slides. (d) Bezel swipe [44] uses thin edge buttons for selection/cut/paste. (e) Two rubbing directions enable one finger zoom
in/out [39]. (f, g) This floating menu can be opened straight on tap or curved with a short drag to its left, fitting a left thumb’s reachable area. (h, i) This
contact list adapts its alignment based on left/right thumb scrolling, so that the call/mail buttons are close to the thumb and text is not occluded.

ThumbRock [10]
These short back-and-forth thumb rolls are detected via
the touch point’s vertical shift, for example to implement
switches [10]. In ProbUI, we implement this model for a
switch in one line (Td->B->Tu) – a touch appears near the
widget’s top, shifts to its bottom, then back up. If we need to
distinguish this from sliding in the same way, we add a rule
for a large touch area (e.g. with large a, Table 2), since
ThumbRock leads to a larger area than slides [10]. In code:
addBehaviour("thumbRock: Td->B->Tu");
addRule("thumbRock on complete with large a",
new RuleListener() { public void onSatisfied() {
respondToThumbRock(); }});

Consecutive Distant Taps (Ta-tap) [21]
Ta-tap is a double tap with a “jump”. It can enable one-finger
zoom/rotation [21]. We implemented it in an image widget
(Figure 5a, b) alongside the usual two-finger zoom/rotation:
addBehaviour("taTap: Cdu->Bd");
addBehaviour("move: Cdm");
addBehaviour("doubleTap: Cdudu");
addRule("taTap on complete in <500 ms",
new RuleListener() { public void onSatisfied() {

switchModeToOneFingerZoomRotate(); }});
addRule("move on complete using 2 fingers",
new RuleListener() { public void onSatisfied() {

switchModeToTwoFingerZoomRotate(); }});
addRule("move on complete using 1 finger",
new RuleListener() { public void onSatisfied() {

switchModeToPanning(); }});
addRule("doubleTap on complete in <500 ms",
new RuleListener() { public void onSatisfied() {

resetViewTransformation(); }});

In words, tapping near the centre, then quickly pressing down
at the bottom (Cdu->Bd) brings up one-finger zoom/rotate
controls [21]. Starting a drag (Cdm) leads to panning (one fin-
ger), or pinch-zoom/rotate (two fingers). To help implement
such functionality, ProbUI provides methods to compute dis-
tance/angle between fingers, which we then use in Android’s
canvas transforms. A double tap (Cdudu) resets the view.

Sliding Toggle Switches [37]
Flipped via matching slides, alternating these switches’ ori-
entations in a list 1) enables flipping multiple ones in one
stroke, and 2) avoids ambiguity when selecting just one (Fig-
ure 5c) [37]. We implement this with BBs for sliding down
(N->S), up (S->N), left (E->W), and right (W->E), and these
rules: 1) down-right oriented switches turn on if “down or

right is complete and most likely” (see tokens in Table 2: the
rule can be written like this sentence); 2) down-left switches
turn on if “down or left is complete and most likely”; 3)
switches turn off via up, or left and right slides, respectively.

Bezel Swipe [44]
Bezel swipe avoids conflicts of scrolling and selection (e.g.
in text views) with very thin “buttons” along the screen
edge [44]. Swiping from the device edge onto the screen
through such a button activates its mode (e.g. select, cut, or
paste) until touch up. We implement this in ProbUI by adding
left/right swipes (C->E, C->W) to thin edge-aligned buttons
(Figure 5d). Since their starting state (C) is hard to hit by di-
rect touch, users instead have to press down on the device
edge, then swipe onto the screen, thus realising bezel swipes.

Rub to Zoom [39]
Olwal et al. [39] improved target selection by allowing users
to first zoom in via rubbing, then moving the finger onto their
(now enlarged) target. They distinguished two rubbing direc-
tions, which we implement as O<->NE and O<->NW. Since
users may rub anywhere on zoomable content (Figure 5e),
we use the origin token (O). It indicates that the areas should
be interpreted relative to the gesture’s start. Instead of reflect-
ing the size of the widget, the states then relate to a default
square area, roughly the width of a finger. Developers may
change this (e.g. O[w=100dp,h=60dp]).

Examples II: Novel Widgets for One-handed Use
Bending Sliders
Our novel slider uses five BBs to bend itself to stay within the
thumb’s reach [5], see Figure 6. We define BBs as shown:
addBehaviour("onSlider: C");
addBehaviour("leftDown: SL<->SSY");
addBehaviour("rightDown: SR<->SSY");
addBehaviour("leftUp: NL<->NNY");
addBehaviour("rightUp: NR<->NNY");
addRule("onSlider is most_likely", new RuleListener() {
public void onSatisfied() { setNoBend(); }});

addRule("leftDown is most_likely", new RuleListener() {
public void onSatisfied() { setBendLeftDown(); }});

addRule("rightDown is most_likely", new RuleListener() {
public void onSatisfied() { setBendRightDown(); }});

addRule("leftUp is most_likely", new RuleListener() {
public void onSatisfied() { setBendLeftUp(); }});

addRule("rightUp is most_likely", new RuleListener() {
public void onSatisfied() { setBendRightUp(); }});



Figure 6. Multiple bounding behaviours let these sliders (a) adapt their
visuals and transfer functions to the thumb (b, c). The sliders’ activation
probabilities, visualised via transparency (d), allow users to resolve am-
biguity by moving the finger in line with the desired preview. For clarity,
we only show sliders in this example. However, they also work next to
other GUI widgets, overlapping them if needed when bending.

We further use this example to illustrate how ProbUI’s proba-
bilistic information helps to provide feedback. While a slider
is a candidate for the user’s intended target, we draw a pre-
view with opacity indicating its activation probability (Eq. 6):
public void onDraw(Canvas canvas) { //Android draw method
if (this.isCandidate()) {
float previewOpacity = this.getCandidateProb();
... // draw preview

}
}

Adaptive Menu
Google’s Material Design6 has a floating button, that may
also open a vertical menu. The topmost items can be difficult
to reach with the left thumb, when the menu is placed at the
right (Figure 5f, g). Our example widget opens such a menu
on tap (Cdu). However, a short “flick” from its left (Ld->NWu),
fitting a left thumb’s movement arc, opens the menu curved
to the left, so that all items can be reached more easily.

Adaptive List
Lists (e.g. Android settings) and their entry labels (e.g. "Wi-
fi") are often left-aligned; related buttons are placed to the
right (e.g. Wi-fi on/off switch). There, they can be hard to
reach with the left thumb, which may also occlude the labels
while scrolling. A reverse alignment for left-hand use seems
more suitable. Our widget (Figure 5h, i) uses three BBs for
automatic adaptation: straight scrolling (T<->B), scrolling in
a left arc (L<->B), and a right one (R<->B). As in the previous
examples, callbacks update the alignment accordingly.

DEVELOPER EVALUATION
We evaluated ProbUI with developers in a survey and a study.

Online Survey: Understanding PML
We conducted a survey, similar to Proton’s evaluation [29], to
assess how easy it is for developers to understand PML.

Survey Design
The survey first explained the basics of PML, then presented
three tasks with four questions each: 1) Gesture to PML:
Given a gesture (as video and still image with annotated tra-
jectory), choose the PML expression (out of four) that best
matches the gesture. 2) PML to gesture: Given a PML expres-
sion and four trajectories, select the correct trajectory (Fig-
ure 7). 3) Writing PML: Express the shown trajectory in PML.
Level of difficulty was informed by a short pre-study.

6https://www.google.com/design/spec/material-design/,
last accessed 21st December 2016

Select the visualisation that shows 
the described gesture:

B<->T
A
B
C
D

This gesture notation is easy to understand.
Touch gestures are easy to write in this notation.
I would use this gesture notation in app development.

disagree rather disagree undecided rather agree agree

Figure 7. Top: An example question from the survey (with correct an-
swer). Bottom: Results of the survey’s Likert questions.

Participants
We recruited participants via social media, an Android forum,
and a university IT mailing list. 33 developers with a mean
age of 25 years (range: 19-35) completed the survey (11 fe-
male). They could win one of three e 20 gift cards; chance of
winning increased with the number of correct answers.

Results and Discussion
On average, developers achieved a score of 95.45% correct
answers in 8:06 minutes, including reading the explanation.
This shows that developers can successfully and quickly learn
PML’s basics. In Likert questions (Figure 7), 97% positively
rated PML as easy to understand and 91% as easy to write.
The majority (76%) indicated interest in using it. Very few
people rated it negatively; one commented that he would also
like a relative notation. This is in fact possible with the “ori-
gin” token (O, Table 1), which did not appear in the survey.

Developer Workshop: Feedback on Using ProbUI
We conducted a workshop to gather feedback from develop-
ers based on hands-on experience with using ProbUI.

Design and Procedure
We invited developers to our lab, one at a time, for 90 minute
sessions. We provided a printed reference, and scaffolding
code for parts unrelated to the focus of the tasks to save par-
ticipants’ time. We introduced ProbUI in a presentation of
about 20 minutes, including answering initial questions. Par-
ticipants then coded six short "projects" (Table 4). We encour-
aged them to ask questions and “think aloud”. We recorded
audio for later analysis. At the end, they filled in a question-
naire on what they (dis)liked about the framework and study,
and answered a set of Likert questions (Figure 9).

1. Hello World – A button that shows "Hello World!" on tap. Focus:
Defining a touch behaviour and reacting to it with a rule and callback.
2. Quiz – Users can reconsider their answer after touch down by moving
the finger. An answer’s transparency is based on its selection probability.
Focus: Using probabilities for continuous feedback.
3. Colour Mixer – A canvas with red/green/blue swatches in the corners.
Colour is mixed based on the finger’s proximity to each swatch. Focus:
Accessing probabilities from “anywhere” for custom effects. Modifying
touch areas ("touching in a wide area around a swatch"; e.g. C[s=8]).
4. Sliding Widgets – Sliding toggles [37] (Figure 5c). Focus: Using mul-
tiple gestures per widget and more complex rules with and, or.
5. Photo Gallery – A gallery with left/right swipes to switch through
the photos. Focus: Adapting the GUI based on the most likely behaviour.
Using the "origin" token (O) to enable starting swipes anywhere.
6. Photo Gallery Transitions – The gallery’s previous/next photo fades
in as the user is swiping. Focus: Continuous feedback based on the prob-
abilities of multiple behaviours for one GUI element.

Table 4. The programming projects from the study.

https://www.google.com/design/spec/material-design/


Figure 8. Screenshots of the study projects (fingers/arrows added): (a)
“Hello World” button; (b) GUI for a quiz game; (c) continuous colour
mixer / drawing app; (d) image gallery app with transition effects. Par-
ticipants also implemented the sliding toggle widgets shown in Figure 5c.

Participants
We recruited 8 people (3 female, mean age: 25 years, range:
22-27) with Android development experience and related jobs
via social media and mailing lists. They received e 10/h.

Results and Discussion
All participants could solve all tasks. However, one was short
on time and thus had to skip the last project.

Concepts are positively accepted: Our framework received
positive overall feedback, both in the Likert ratings (Figure 9)
and people’s comments. For example, developers liked that
“it opens doors to many new possibilities that are otherwise
not feasible” (P1), that it “motivates to think of completely
new ways of interaction” (P3), and that it “saves lines of code”
and is “more efficient than conventional GUI coding” (P5). P2
liked that she could “make design changes on the basis of
probabilities”. P4 noted that he could still think in terms of
bounding boxes, and stated that this helped him to learn and
transition to the new framework. P6 expressed a similar view,
and P7 found “that it allows for very nice applications”.

PML is easy to use after introduction: Developers liked spec-
ifying gestures and callback-rules via PML, yet there was a
learning curve: For example, the difference between the two
sets of area tokens (on widget vs around it) was not always
clear initially. In general, everyone said that they had to get
used to the concepts at first, but later commented on ease of
use. For instance, P7 stated: “The framework was easy to use
after getting familiar with the concept”. Similarly, P8 said: “It
was pretty easy to use the framework, once the possibilities
are known. The syntax was easy to understand and short in
lines of code.” P1 said that “PML is really really easy and
straight forward”. Others liked “how easy it was to make and
work with custom gestures” (P2), and “that the method calls
are very verbatim” (P3). This feedback fits to the high scores
in the survey on understanding PML.

Gesture expressions vary: For example, developers expressed
a “slide right” for the sliding widgets as W->E or L->R. Both
solutions work and people used their choice consistently for
the other slides. Variations partly occurred since it was not
clear whether the given widget was the whole slider or the
knob. As P6 said, “an introductory [...] visualisation could fa-
cilitate that process”. We thus amended our documentation
with visualisations for basic GUI elements. Moreover, we
added a “debug mode” that shows both boxes as well as ges-
ture models (see video for similar visualisations). This facili-
tates learning PML by allowing developers to visually verify
their bounding behaviours directly in the running app.

The concepts of the framework were easy to understand.
The concepts of the framework were easy to learn.
Solving the programming tasks with the framework was easy.
Without ProbUI, I could have solved the tasks faster.
Without ProbUI, I could have solved the tasks with less code.
I would use this framework for mobile app development.
The gesture notation was easy to understand.
The gesture notation was easy to learn.
The notation of rules was easy to understand.
The notation of rules was easy to learn.
Tasks: It was easy to express the required gestures.
Tasks: It was easy to express the required gesture rules.
I would use this notation for mobile app development.

disagree rather disagree undecided rather agree agree

Figure 9. Likert questions and results from the study. Overall, develop-
ers rated our framework and concepts favourably. Comments revealed
two main points of critique: 1) lack of IDE support for PML, and 2)
initial learning curve for the API and the probabilistic concepts.

PML lacks IDE support: P3, P4 and P8 noticed that a downside
of PML is the lack of syntax checking and auto-completion.
This is the reason for the few non-positive ratings on ease
of use in Figure 9. Such features could be realised as an IDE
plugin. As a quick fix, P4 suggested that he could define string
constants for PML parts to enable auto-completion.

Working with probabilities is unfamiliar but welcomed: Prob-
abilistic GUIs were new to everyone. Several people asked
about the update of probabilities and their scope. For exam-
ple, P4 asked whether the most_likely rule refers to be-
haviours of this element or the whole GUI. The most com-
mon initial hurdle (five people) was the difference between
probabilities for gestures and for GUI elements. Promisingly,
comments and observations also showed that throughout the
study, developers grasped the practical value of these two
types of probabilities. They accessed probabilities for be-
haviours (gallery, sliding widgets) and GUI elements (quiz,
colour mixer). Four people even found a shorter way of using
the probabilities for the colour mixer, which we then adopted
as the reference solution. The probabilistic concept received
positive final feedback, for example regarding GUI adapta-
tion and feedback (P2, P5, P6), and enabling novel applications
and interactions (everyone). P4 critically stated that “it would
be great if any element could be enhanced with probability”,
suggesting games and touchscreen musical instruments in ad-
dition to our tasks. P3 and P7 noted that the probabilities in-
spired them to think about interaction from a new perspective.

Refining API and documentation: Based on comments by the
first two participants, we revised the examples and introduc-
tion, which noticeably improved the learning curve. Follow-
ing feedback by three developers (P4, P6, P7), we clarified
several method names. We also followed P1’s suggestion to
remove a “setReady” method that used to be required after
adding behaviours/rules. Based on feedback by P3 and P8, we
modified the API to also return the behaviour-objects when
adding behaviours. Developers can now assess gestures both
by their labels or via those objects (e.g. to get probabilities).
We also improved the “origin” token (O). Originally, it was
merely a flag to indicate a relative gesture, but almost every-
one used it as an area itself (“finger centre”), since that is
more consistent to the rest of PML. Hence, we changed it to
work that way (Table 1 already shows the new version).



SUMMARY AND DISCUSSION
As the examples and evaluation show, ProbUI helps devel-
opers to define, detect, and react to their widgets’ required
touch behaviours. Crucially, it automatically creates proba-
bilistic models for these behaviours. Regarding widgets from
the literature, the original work did not provide such models.
Each project rather invented its own method for detecting the
target behaviour and distinguishing it from other behaviours.

In contrast, ProbUI realises these widgets with one consistent
model. This also greatly facilitates combining multiple such
widgets in one probabilistic GUI. For example, we can easily
add our adaptive menu on top of our adaptive list (see video).

In the following paragraphs, we address questions from dis-
cussions with fellow researchers:

Do touch GUIs get better if they use many gestures?
Not every button has to react to multiple gestures; develop-
ers still decide if/when to use gestures. Our one-hand widgets
adapt to behaviour variations and constraints, rather than in-
troducing completely new behaviours. ProbUI does not pre-
clude the use of normal (Android) widgets: they either receive
normal events or use a wrapper (which e.g. simply defines C).

Which gestures cannot be expressed in ProbUI?
As a declarative language, PML trades some expressiveness
for ease of use when defining gestures for GUI elements. It
is not as powerful as general regular expressions, but cov-
ers many GUI-related gestures from the literature. However,
complex (multitouch) trajectories (e.g. as shortcuts unrelated
to GUI targets) are better created via demonstration [33]. It
is also currently not possible to directly express aspects like
“not entering” a region and invariance to distance (e.g. encir-
cling with any radius). Here, future work could explore other
features, like angles instead of x, y. Conceptually, instead of
writing PML, HMMs could also be learned from data.

How do I choose the best PML expression for my gesture?
Gestures for GUI elements can be expressed in PML directly
as a chain of areas which the finger should pass, in analogy to
bounding boxes. It is generally not important to find a “best”
expression. Due to the probabilistic approach, PML’s areas
can be used rather robustly. For example, a “slide right” may
work practically well for a widget regardless of whether it
was defined as L->R or W->E.

How accurately do BB models fit users’ actual behaviour?
HMMs created via PML cannot match behaviour as well as if
they were learned from user behaviour data. However, PML
enables developers to define probabilistic GUIs without col-
lecting training data. Note that useful relative comparisons
are indeed possible with our more “approximative” use of
HMMs, as our examples demonstrate. These examples and
the literature show that most GUIs and widgets are interested
in such relative comparisons.

How does ProbUI’s inference respect interface states?
While HMMs themselves do not use “GUI states”, ProbUI in-
deed considers widgets’ locations and sizes, since each HMM
is based on its widget’s location and size. Moreover, wid-
gets’ relative locations and sizes reflect in the target posterior

(Eq. 6). Our mediator can also access GUI properties. For ex-
ample, it ignores invisible or disabled widgets, but developers
may write other mediators to consider such states differently.
ProbUI’s API does not directly include (nor require) defining
widget state machines (e.g. [49]). Nevertheless, developers
can use ProbUI’s probabilities to inform probabilistic “state”
changes for widgets (e.g. changing our slider’s bending state,
i.e. direction). Finally, bounding behaviours follow their wid-
get, if it moves on the screen (e.g. respecting scrolling state).

Are bounding behaviours computationally expensive?
BBs require more computations per touch than checking
boxes, but less than adaptive keyboards (e.g. [56]) with lan-
guage models. We experienced no delays (Nexus 5). While
costs increase with more targets and behaviours, their number
in any GUI is inherently limited by usability. ProbUI can also
be highly parallelised (e.g. one job per target and behaviour).

CONCLUSION
GUI toolkits today describe targets with static rectangles.
This limits possibilities for feedback, GUI adaptations, dy-
namic interaction, and reasoning under uncertainty, as envi-
sioned by probabilistic frameworks [26, 34, 35, 48, 49, 50].
By generalising target representations from static geometry
tests to sets of gestures, ProbUI enables developers to create
probabilistic GUIs that not only consider where targets expect
touches, but also how input is performed over time.

ProbUI for the first time integrates 1) easy to use declara-
tive gesture definition for GUIs with 2) probabilistic models
and 3) reasoning in one framework. It achieves this with the
first declarative gesture modelling language (PML) and in-
terpreter which automatically yield probabilistic models for
touch GUIs, given non-probabilistic definitions.

We demonstrated ProbUI’s value by implementing examples
from the literature and novel widgets. A survey showed that
developers can learn the basics of PML in under ten minutes.
We also gathered feedback in a lab study. Developers liked the
ease of use of PML. Although working with probabilities was
unfamiliar to them at first, they successfully completed the
tasks and found ProbUI’s probabilities useful. They identified
areas for further improvement, which we partly implemented
directly via refinements to both API and documentation.

ProbUI can be used by developers and researchers to imple-
ment and prototype novel widgets, adaptations, and feedback.
Independent of ProbUI, our generalisation from boxes to “be-
haviours” offers a new perspective on GUI target represen-
tation. In general, we hope to spark more widespread use of
probabilistic reasoning, feedback and adaptation in the design
and development of future mobile touch GUIs.

Bounding behaviours are not limited to touch: Future work
could support further modalities, for example to represent
GUI elements that react to shaking the device.

ProbUI for Android, a detailed documentation, and a tutorial
course based on the improved workshop material are avail-
able on the project’s website:

http://www.medien.ifi.lmu.de/probui/

http://www.medien.ifi.lmu.de/probui/
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