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ABSTRACT
We propose a paradigm shift in human-centered security research
in which users’ objective behavior and physiological states move
into focus. This proposal is motivated by the fact that many per-
sonal and wearable devices today come with capabilities that allow
researchers to assess users’ behavior and physiology in real-time.
We expect substantial advances due to the ability to develop more
targeted approaches to human-centered security in which solutions
are targeted at individuals’ literacy, skills, and context. To this end,
the main contribution of this work is a research space: we first pro-
vide an overview of common human-centered attacks that could
be better understood and addressed through our approach. Based
on this overview, we then showcase how specific security habits
can benefit from the knowledge of users’ current state. Our work
is complemented by a discussion of the implications and research
directions enabled through this novel paradigm.

CCS CONCEPTS
• Security and privacy→ Human and societal aspects of se-
curity and privacy.
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1 INTRODUCTION
In the past 20 years, following seminal papers such as “Johnny can’t
encrypt” [90], “Users are not the enemy” [7] and “User-centered
Security” [96], the usable security community has focused on obtain-
ing a profound understanding of human habits in security-related
situations. Application areas include research on password selec-
tion and maintenance [16, 34, 84–86], habits while being exposed to
phishing emails [29, 36, 95], shoulder surfing [12, 18, 35], and warn-
ing messages [9, 19, 56]. Research in these areas is characterized
by different research approaches, from controlled studies, yielding
insights of high internal validity (for example, letting participants
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perform an email classification task in a lab environment) to in-the-
wild studies with a stronger focus on ecologic validity (for example,
observing real-world phishing habits in companies).

For decades, methods such as interviews and questionnaires
have established themselves as the prevalent approaches to data
collection [33], primarily due to their ability to capture subjective,
in-depth insights into users’ reasoning, motivations, and habits.
At the same time, the proliferation of ubiquitous computing tech-
nologies is bringing sensing ever closer to the human body, be it
through sensors integrated into personal devices (smartphones),
wearables (smartwatches, HMDs), or tangibles. Those technologies
have been appropriated by the Ubicomp and HCI community, not
only as a novel means for data collection but also to build novel,
adaptive user interfaces able to target users’ context and state.

The technologies above allow insights into human behavior,
physiology, and context in real time and without the need for in-
teraction by the user. Still, there are only a few applications in
security to date. A prominent example is behavioral biometrics,
the approach of identifying humans based on their behavior [77],
for example, as they walk [71], type [87], or interact with tech-
nology [37]. We propose a paradigm shift towards leveraging the
opportunities of behavioral and physiological sensing in the context
of human-centered security. We believe this shift can open novel
opportunities both regarding obtaining an in-depth understanding
of security-related situations and to building novel human-centered
security technologies. One example could be exploring how user
states (for example, fatigue, attention) and context influence the
susceptibility to human-centered threats. An example of a novel
physiological security interface would be identifying when users
are at risk and providing in-situ guidance and means for protection.

The ability to personalize and contextualize security approaches
will pave the way towards more targeted security interventions,
that is, security designs not created for the average user but targeted
towards individuals and their situative needs. Such designs will
allow accounting for what users already know, for what their cogni-
tive and physical abilities are, and for offering help and protection
in situations in which security challenges arise.

To achieve this, we contribute a research space that charts how
behavioral and physiological sensing can be leveraged to build and
enhance the security of interfaces. Firstly, we introduce human-
centered threats, that is, threats exploiting the vulnerabilities of
humans. This list serves as a basis for identifying human security
habits, much of which has been the focus of the research commu-
nity for decades. We then explain how knowledge about humans’
individual states, derived from behavior and physiology, can be
leveraged during the design of security mechanisms. A discussion
of the challenges and future research complements our work.
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Figure 1: User State Model adapted from [83]: Physiological
and behavioral reactions are predictive of user states.

2 BACKGROUND AND RELATEDWORK
We introduce essential terms, explain the interplay of physiology
and behavior, and shed light on how state-of-the-art approaches in
human-centered security can benefit from this novel paradigm.

2.1 Terminology
We define physio-behavioral security as the use of sensor data with
the objective of (1) improving understanding of how a technology
user responds to a security-critical situation and (2) using this
knowledge to improve the design of the system to increase security.

Depending on its objectives, a given study might make a stronger
contribution to the first (understanding) or second (practical im-
plications) part of this definition. Sensor data can include both
behavioral data (e.g., typing behavior, mouse movement, touch
targeting) as well as physiological data (e.g., heart rate, gaze, skin
conductance). Types of sensor data are presented in section 4.3.
Note that physio-behavioral data might be complemented with
additional data types, allowing, for example, a particular context to
be characterized (e.g., location data, presence of others, etc.).

We use the term behavior for any intentional user action that
can be sensed. Well-learned user behavior (e.g., consistently using
a password manager) will be referred to as (security) habit.

A security-critical situation refers to any moment in which a
user’s habits could substantially impact their security, regardless
of their situational awareness. For instance, when creating a pass-
word, certain user habits would lead to better security (e.g., using
a password manager). When receiving a phishing email, a user’s
action or inaction (clicking vs. not clicking on the phishing link)
influences the risk of inadvertently downloading malware.

In these situations, physio-behavioral security can help under-
stand the user’s state in the moment and its security-relevant im-
plications. A future perspective would be to use this knowledge to
intervene in opportune moments and influence users’ behavior.

In physio-behavioral security, a myriad of physiological and
behavioral data streams can be relevant sources of information
about the user’s state. Physiological data collected by sensors placed
on/around the human body include but are not limited to eye gaze

data, heart rate, respiration rate, skin conductivity, and cortical
activity (brain data), among others. Prior research in the areas of
physiological sensing, affective computing, and cognitive systems
provides a rich basis of how the body responds to external and
internal stimuli and how these body signals can be used to infer
user states such as attention, cognitive workload, stress, arousal, or
emotions [83]. We discuss these signals in more detail in Section
4.3. Behavioral data refers to data collected due to actions from
the users. These include typing and touching behaviors, mouse
movement, body motion, and task performance behaviors (e.g., task
accuracy and reaction time). We discuss behavioral data streams
and the states that can be inferred in more detail in Section 4.3.

Both physiological and behavioral data can be collected through
a wide variety of sensors that can be deployed either as wearables
(for example, smart glasses, smart watches, on personal devices (for
example, mobile phones), or in users’ environments (for example,
voice assistants, webcams, or eye trackers at users’ desktops).

2.2 Research Methodology in Usable Security
A recent literature review investigated the methods used by the
Usable Privacy and Security (UPS) community and found that in-
terviews, experiments, and questionnaires were most frequently
used by researchers [33]. The authors do not cite papers using be-
havioral or physiological measurements beyond click behaviors.
Indeed, there are very few research papers in Usable Privacy and Se-
curity using these types of measurements so far (exceptions include
[8, 64, 67, 93]), despite the potential these methods hold.

These frequently used self-reported methods hold some limita-
tions. When self-reported methods are used to gain an understand-
ing of security habits (as opposed to opinions, perceptions, etc.),
the results rely on the research participants’ ability to remember
these habits. Researchers also often rely on hypothetical situations
and study intentions rather than habits. When measuring, for in-
stance, click behaviors, these measures are relatively simplistic and
do not represent the details that can be represented in more nu-
anced behavioral or physiological measurements. In usable security,
user states seem to play an important role. For instance, we know
that people are more likely to fall for a phishing attack if they are
stressed [78] or under a high workload [69] based on both in-situ
observation and interview data [32] as well as research on the most
successful phishing attacks, which use urgency cues (presumably
causing time pressure) [91]. Using additional sensor data, we could
obtain more fine-grained insights into situative user states.

2.3 Behavioral and Physiological Research in
Usable Security

The use of behavioral and physiological data has been explored by
research in usable security in the past decades. Still, it has, so far,
been strongly driven by specific application areas and technology.

The most prominent and well-explored area is behavioral biomet-
rics, that is, the use of behavior for uniquely identifying individuals.
Much work has focused on understanding how accurately users
can be identified based on different types of behavior. This includes,
most importantly, keystroke dynamics [21, 23, 28, 30], touch tar-
geting [24], and walking, but also behavior in virtual reality (VR)
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[73] as well as gaze behavior [60]. Beyond specific application ar-
eas, researchers have looked at implications for the design of the
user interface (e.g., smartphones [24]) and how data for training
predictive models can be collected outside the lab [22]. From a se-
curity perspective, researchers have focused on threat models to
behavioral biometrics [50, 65] and fallback authentication [66].

Furthermore, the role of gaze has been the focus of research [46].
Prior work looked at how eye gaze can be leveraged for explicit
[31, 57], implicit [17, 59, 61], andmultimodal authentication [49, 57].
Also, researchers have looked at how gaze could be used more gen-
erally to enhance security mechanisms. For example, Arianezhad et
al. [10] demonstrated that security expertise is correlated with gaze
duration while looking at security indicators. Mihajlov et al. [63] ex-
plored how much time users spend looking at different fields upon
account registration. In graphical authentication schemes, eye gaze
has been used to create dictionaries of frequently selected positions
(hot-spots) [58] and to personalize authentication schemes [47, 75]

Looking at other types of physiological and behavioral data,
we find fewer examples of how they can be employed in security-
critical situations. Yu et al. investigated using mouse movement
behavior to detect phishing email awareness [93]. Hashem et al.
explored using Electroencephalography (EEG) and Electrocardiog-
raphy (ECG) to detect insider attacks [39]. Neupane et al. used EEG
and eye gaze to infer user behavior toward malware warnings and
phishing email detection. This provides a basis for future real-time
alerts based on user physiological and neurological behavior [70].

2.4 The Interplay of Physiology and Behavior
Prior work has explored the complex relationship between context,
individual factors, and user states. In our research, we build on
Schwarz et al.’s user state model [83]. It identifies six basic human
states: situational awareness, engagement, attention, workload,
fatigue, and emotional state. Those states are of particular interest
in human-centered security, as they have a profound influence on
how humans react in specific situations. For example, prior research
found that people believe to be more susceptible to shoulder surfing
as they are under high workload [78] or in a particular emotional
state, such as stress [69]. Another example is that knowledge of
attention can be leveraged to assess whether users noticed specific
elements in emails hinting at a phishing attempt [67]. What is
equally interesting is that attackers often try to elicit certain user
states. For example, in social engineering, attackers often try to
evoke the emotional state ’fear’ to make users take certain actions
(e.g., frightening users to lose access to their bank accounts) [38].
As a result, (real-time) knowledge of users’ states is a powerful
means to not only better understand a security-related situation
but this information can also serve as a trigger for interventions
designed to protect users from cybersecurity attacks.

Schwarz’s model implies that humans’ physiological reactions
and behavior are predictive of their state, that is, if a system is
capable of assessing physiological reactions (such as heart rate,
pupil dilation, or electrodermal activity) and certain behaviors (fa-
cial expressions, postures, eye movements), it is possible to predict
the current user state as in [83]. Note that other individual fac-
tors influence a person’s state. Those include long-term factors
(e.g., knowledge, ability, skills, experience, and motivation) and
short-term factors (e.g., sleep, well-being, and personal needs).

We argue that understanding this interplay – which is primarily
enabled by the proliferation of technology allowing individuals’
physiology and behavior to be assessed – will enable a profound
shift in how we build approaches to mitigate cyber-attacks.

3 EXAMPLES
We sketch two motivating examples of novel research approaches
enabled by the proposed paradigm shift (cf. Figure 2). The first ex-
ample concerns secure password habits. Here, we investigated what
can be learned from understanding a user’s state while registering
a password [5, 6]. The second example looks at user states while
being exposed to phishing emails. These examples represent two
spots in a design space, charted in Section 4.

3.1 Password Behavior
We assessed the interplay of password strength and cognitive

load [6]. We hypothesized that as users create stronger passwords,
this will increase their cognitive load. To this end, we collected
eye gaze and pupil dilation data while users entered a series of
strong and weak passwords. Our analysis of users’ pupil dilation
as a measure of cognitive load revealed that composing stronger
passwords consistently led to a stronger change in pupil dilation
than weaker passwords ( 3).

Our findings have interesting implications. Firstly, it enables
the design of novel technologies to protect people from choosing
weak passwords. One example could be a ‘ubiquitous password
meter’. Think about users in the future wearing AR glasses capable
of assessing users’ cognitive load as well as identifying situations
in which users are exposed to a password registration interface.
The AR glasses could now inform users that they are about to
choose a weak password (a) without knowing the actual password
and (b) independent of whether the underlying password system
implements means to analyze the entered password for its strength.

Secondly, the approach allowed interesting insights into users’
habits to be gathered, enabling subsequent research. Figure 3 reveals
two interesting observations. (1) For the first created password, the
mean pupil diameter change is considerably smaller than for the
subsequent passwords. This effect is likely caused by participants
reusing a password (though the difference to weak passwords is still
strong enough to make a distinction). (2) The mean pupil diameter
change decreases over time. The explanation for this is that users,
over time, developed a strategy for creating passwords (such as
making up a sentence and then composing the password as the
sequence of the first letters of the words in the sentence). This
demonstrates the rich insights obtainable from assessing users’
physiology and behavior in security-related situations.

We followed up by more closely investigating password reuse [5].
We looked into whether it is possible to infer password reuse from
behavior and physiology. To this end, we conducted an experiment
in which we let participants create passwords for two different
websites. During this process, we assess users’ gaze behavior and
keystroke dynamics. We found that about 30% of users reused
passwords. This allowed us to compare user states for cases in
which users reused passwords and cases in which they did not.
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Figure 2: Examples of how security systems can benefit from knowing users’ states: Eye gaze and keystroke dynamics hinting
at password reuse (left). Mouse movement and eye gaze hint at exposure to a phishing email (right).

Figure 3: Influence of password strength on pupil diameter.
When users are tasked to create a series of passwords, they
often reuse a password (left circle), resulting in a lower cog-
nitive load. After several passwords, they develop a strategy,
resulting again in a decrease in cognitive load.

Our findings yield again interesting insights. We confirmed our
hypothesis that a lower workload was associated with password
reuse. However, we found that other gaze features had a stronger
influence on the accuracy of the predictive model. More specifi-
cally, fixation duration had the most substantial influence, followed
by saccadic duration, the number of fixations and saccades, and
fixations on screen and keyboard. The latter two features are par-
ticularly interesting: The reason for which fixations on the screen
and keyboard are a strong predictor is that for reused passwords,
people have memorized finger movements (i.e., motor memory)
and, hence, need to less frequently switch their gaze between the
screen (password registration interface) and the keyboard. We also
looked at user behavior, more specifically, their typing behavior.
We found that differences between reusing a password and coming
up with a new one were visible in the flight time between button
presses, keystroke count, and typing duration.

Also here, the findings have some interesting implications from
a practical perspective. While it is well-known that password reuse
is the root cause for credential stuffing attacks, it is much less clear
how to prevent such password choice habits, that is, how users
can be supported in not reusing passwords. Existing approaches
implemented by many password managers are to analyze the stored
passwords for reused passwords and point this out to the user. How-
ever, this approach has been demonstrated to be hardly effective:

changing a password once stored is cumbersome, and prior research
showed that even in cases in which users become aware that their
password has been part of a breach, only 13% of people changed
their password within three months of the breach [15].

The findings of the work described above have the potential to
address this in a fundamentally different way: knowing in real-time
that users are about to reuse a password allows for intervening
before users’ finished the password registration process, that is,
an intervention (e.g., real-time nudge) could point out the issues
associated with password reuse in an opportune moment in which
the cost for changing a password is minimal. We demonstrated that
using gaze data, a prediction of password reuse from gaze data is
possible already before users even start entering a password, as
cognitive load as a result of making up a password can already be
assessed before users start typing.

3.2 Exposure to Phishing Emails
In the third example, we investigate the influence of phishing

emails on users’ eye gaze and mouse movement behaviors [3]. To
this end, we conducted a study in which participants engaged in a
role-play scenario where users were asked to sort emails in their
inbox into different folders (important, spam, neutral, bin) of a
fictional character working in an IT company. During the role-play,
gaze data and mouse movements were collected using remote eye
tracking with the users’ webcams. The collected gaze and mouse
data was then analyzed, and features extracted.

Our findings demonstrate that certain features of mouse and gaze
data were good indicators of whether or not a user has correctly
detected a phishing email. Attention, as predicted through mouse
hover speed and the number of gaze fixations on particular areas
of interest, were significant indicators of whether a user was aware
of phishing emails. As opposed to the aforementioned examples
on password choice, reliable predictions were more difficult. The
reason for this is, on the one hand, the complex nature of phishing
emails. Here, the type of email, as well as the presence of indicators
in emails hinting at phishing (e.g., ambiguous links), had a strong
influence. On the other hand, individual differences across users
played a role. For example, some users were more likely to click on
links, which their risk-taking behavior could explain.
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This example demonstrates both opportunities and challenges
of building security approaches based on user states. The ability to
predict exposure to a phishing email from user states that the user
might not be consciously aware of or has learned to ignore could
fundamentally change how we protect users from social engineer-
ing attacks. Rather than making users verify the legitimacy of every
single email and making them think twice before they click a link
or open an attachment, state-aware interventions would not only
reduce warning fatigue. Still, they would also allow interventions
to be highly individualized and tailored towards individual factors.
At the same time, this example demonstrates the complexity of
this approach due to the interplay of user state with context and
individual factors, requiring further research.

3.3 Summary
The aforementioned examples show different application scenarios
in which physiological and behavioral input, beyond biometrics
for authentication, can be used in security-critical situations. The
examples also surface some of the challenges and opportunities
associated with such methods that should be explored in more
detail. In the following section, we chart a research space meant
to showcase the potential of the approach and help researchers
identify interesting directions to explore.

4 A RESEARCH SPACE FOR
PHYSIO-BEHAVIORAL SECURITY

In the previous section, we provided three examples of how human-
centered security research can benefit from a shift of focus toward
user behavior and physiology. The following section outlines a
research space to demonstrate how the research community could
systematically explore this area.

The research space (see Figure 4) consists of three dimensions:
a human-centered attack space, human cybersecurity habits, and
examples of behavior and physiological reactions to look at. It is
worth noting that this research space is not but a snapshot in a con-
stantly evolving threat landscape. It is intended as a scaffold based
on which researchers can explore the potential of the approach and
extend the space as novel threats emerge and as novel technologies
to assess users’ behavior and physiology become ubiquitous.

4.1 Human-Centered Attacks
The research space is centered around human-centered attacks aim-
ing at obtaining sensitive information. Such sensitive information
may be used to impersonate users or commit financial fraud. Ac-
count credentials, which attackers can exploit to authenticate, are
of particular interest. User account access gives cybercriminals ac-
cess to payment information (credit cards, bank accounts, PayPal),
enabling them to commit financial fraud. Or it gives them access to
a larger network, which they might explore and compromise. Com-
mon examples are (a) looking for and deleting backups, encrypting
data, and demanding ransom in return for the decryption key (ran-
somware) or (b) ex-filtrating sensitive information and threatening
to publish it unless the victim pays money (extortionware).

In the following, a non-comprehensive list of approaches to
obtaining sensitive information is provided.

4.1.1 Guessing Attacks. Guessing attacks refer to cyber-attacks in
which the impostor tries to obtain a secret (for example, a password,
PIN, or lock pattern) through guessing. This usually happens dur-
ing offline attacks where impostors try out many possible secrets.
Example approaches include but are not limited to:

Brute Force Attacks In this attack, a malicious actor attempts
to reveal account credentials by repeatedly trying different
username and password combinations.

Dictionary Attack In this attack, a malicious actor attempts
to reveal account credentials by trying words from a dictio-
nary or a list of commonly used passwords.

Credential Stuffing Credential stuffing is an attack in which
stolen usernames and passwords obtained from a data breach
or phishing attack are used to gain access to multiple user
accounts. This attack is becoming increasingly common as it
is easy to conduct and can be used to access many accounts
quickly and easily. The attack begins when malicious ac-
tors obtain a list of stolen usernames and passwords from
a data breach or phishing attack. They then use automated
programs to attempt to access multiple user accounts simul-
taneously using the same stolen credentials.

4.1.2 Observation Attacks. In observation attacks, impostors try
to eavesdrop on credentials in the real world or the digital world.

Shoulder Surfing Shoulder surfing is an attack in which ma-
licious actors observe users while entering information on a
device without the user noticing. This attack is most com-
monly used to obtain passwords or other sensitive infor-
mation, such as credit card numbers or bank account in-
formation. Shoulder surfing can be conducted in person or
remotely via video surveillance. To protect against shoul-
der surfing attacks, users should monitor their surround-
ings when entering sensitive information. Other measures
to counteract shoulder surfing are privacy screens, video
surveillance, or physical barriers to prevent malicious actors
from observing information.

Keyloggers Keyloggers are malicious programs that can cap-
ture keyboard input on a computer. Malicious actors use
them to gain access to confidential information, such as pass-
words, credit card numbers, and other sensitive data. Key-
loggers can be installed on a computer through malicious
email attachments, websites, or software downloads. Once
installed, the keylogger will capture all keystrokes on the
computer, allowing the malicious actor to access confidential
information. Keyloggers can also capture other information,
such as screenshots of the computer’s desktop or web activ-
ity. This allows malicious actors to access more information
than just the keystrokes.

Sniffing Sniffing is an attack in which malicious actors use
tools to capture and analyze data transmitted over a network.
Tools such as WireShark can be used to capture confiden-
tial information, such as usernames, passwords, and credit
card numbers. This information can then be used to access
accounts and impersonate users. Sniffing attacks are difficult
to detect, as the malicious actors are not actively attacking.
Instead, they passively monitor the network traffic for any
sensitive data being transmitted.
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Figure 4: Research Space for User States in Security Tasks: Security habits lead to observable changes in user behavior and
physiology. These changes can be used to target user interfaces to users’ states better.

4.1.3 Social Engineering Attacks. Another approach is to make
users reveal sensitive information, such as credentials, using a
request that appears to be legitimate. Today, many different forms
of social engineering exist. We focus here on very common ones:

(Spear) Phishing Spear phishing is a type of social engineer-
ing attack in which malicious actors target a specific indi-
vidual or organization with a personalized and often con-
vincing email. The email typically contains malicious links
or attachments that, if clicked, will install malware on the
user’s computer or give the attacker access to sensitive in-
formation. Spear phishing is often difficult to detect, as the
emails are carefully crafted to appear legitimate and often
contain convincing information about the target. As spear
phishing attacks are not sent in large numbers and are highly
targeted, technical detection is also challenging.

Vishing Vishing is a social engineering attack in which mali-
cious actors use voice communication, such as phone calls
or voice messages, to manipulate victims into providing con-
fidential information or taking action, such as transferring
money from a bank account. These attacks typically begin
with a phone call or voice message from an attacker, who
may pose as a representative of a bank or other organization.
The attacker will then attempt to manipulate the victim into
providing confidential information or taking action, such as
transferring money.

Further (sub)forms of social engineering exist, which mainly
differ in the medium used. Prior years witnessed social engineering
attacks through SMS (smishing), Twitter (twishing), pop-ups (pop-
up phishing), and images (image phishing).

4.1.4 Reconstruction Attacks. Several forms of attacks exist in
which impostors, once they obtain physical access to a device, try
to reconstruct credentials.

Smudge Attacks Smudge attacks exploit the fact that skin fat
produces a smudge trace whenever a user interacts with a
surface. This trace is then clearly visible under slant incident

light. Prior work has shown that this allows attackers to
reconstruct the original password [13]. This type of attack
is particularly critical for authentication systems in which
the smudge trace can be directly matched to the secret.

Thermal Attacks As users enter credentials on a physical sur-
face, thermal cameras can be used to reconstruct the pass-
word. Prior work has shown that, in particular, PINs and
lock patterns are susceptible to this kind of attack [1], which
could realistically occur in users’ everyday lives as many
opportunities for thermal attacks exist [14].

4.2 Human Cybersecurity Habits
The following section lists several possible target habits for more
securely interacting in the digital world, specifically intending to
mitigate the aforementioned attacks. The habits revolve around the
choice of passwords, using emails, surfing the WWW, and appli-
cation/device usage. Note, again, that this is not a comprehensive
list. Still, this overview is meant to demonstrate the many appli-
cation areas in which knowledge of the user state may open new
opportunities to develop stronger means for protection.

4.2.1 Passwords. As described above, users’ habits when it comes
to creating, maintaining, and using passwords have a strong influ-
ence on human-centered attacks’ success rate.

Weak Password Choice Weak passwords make them suscep-
tible to guessing attacks. As a result, much work has been
conducted on understanding users’ password choices and
how they can be supported in choosing stronger passwords.
Several factors play a role here. Firstly, prior work has identi-
fied a lot of misconceptions users have about the strength of
their passwords [88]. Hence, analyzing users’ states might
hint at such misconceptions and allow them to be addressed
in a personalized manner. Secondly, the question is when
there is an opportune moment to approach the user regard-
ing choosing a strong password. For example, most online
shopping websites require users to create an account and
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password upon checkout. At this moment, however, the user
is strongly focused on the checkout process with a presum-
ably low motivation to invest effort in choosing a strong
password. A better understanding of where and when users
direct their attention during tasks might help identify more
suitable moments for approaching users with the request to
set a password.

Password Reuse Password reuse is a dangerous practice, as
it enables credential stuffing attacks targeting multiple ac-
counts protected with the same credentials. At the same
time, this danger is unclear to many users. Services and
tools, such as https://haveibeenpwned.com/, are attempts
to address this but struggle with the fact that users would
need to engage with them actively. With knowledge of users’
behavior, it might be possible to build interventions that
integrate both means to explain this threat to the user while
at the same time guiding how to mitigate attacks resulting
from password reuse.

Sharing Passwords Passwords can be shared. While an ap-
parent challenge here is that sharing credentials makes it
more difficult to keep track of who has access to the pass-
word, another challenge is that how the password is being
shared may lead to malicious actors gaining access (e.g.,
sending a password through unencrypted email or text mes-
sage). Here, knowledge of situational awareness might help
mitigate cases in which password confidentiality is at risk.

Entering Passwords Finally, as explained in the attack space,
passwords might be subject to observation or reconstruction
attacks. Knowledge of where users are directing their atten-
tion upon password entry might help build interventions
that protect users from attacks such as shoulder surfing. For
example, Saad et al. showed how shoulder surfing attempts
can be communicated to the user [79]. Yet, knowledge of the
user state might help to minimize any harmful influence of
interventions (warning fatigue, distraction).

4.2.2 Emails. The second category of security habits concerns
users working on emails. As has been described above, phishing
is an omnipresent threat to emails. Many phishing emails exploit
users’ states. For example, it is well known that phishing emails
are often sent close to the end of a working day when users are
tired or less engaged. Or they target situations of high workload,
for example, close to public holidays. Or they elicit and target
emotional states, such as fear or stress. In the following, several
aspects of working on emails are described, alongside pointing out
opportunities for better protecting users based on knowledge of
their state. Of interest is the work of Pfeffel et al. [72], who assessed
where users direct their attention when looking at emails. Their
findings show users mostly looked at the header and body. Hence,
interventions might focus on those areas.

Attachments Many phishing emails contain attachments with
malicious software, for example, a keylogger subsequently
monitoring and transmitting users’ keystrokes.

Links A common approach in phishing emails is making users
click on a link, directing them to a fake website on which
they are supposed to enter their credentials. Email interfaces

might benefit from the ability to assess users’ attention to-
wards suspicious elements, of which links are but one. An
example of work in this direction is EyeBit [68], a browser
extension using eye tracking to check whether users have
looked at a URL (to check its legitimacy) and, before the user
has done so, deactivates all input forms.

Senders Attackers often send phishing emails from fake email
addresses. They try to conceal this by using a different sender
name (usually of a person being impersonated). While many
email programs display the email address next to the sender’s
name, this is often not true for mobile email apps. Knowledge
of user attention might be used similarly to make them verify
an email’s legitimacy.

Salutation The salutation is an important element hinting at
the legitimacy of an email. Bad phishing emails often use a
generic salutation (such as ’Dear Sir or Madam’) to address
the user. Again, knowledge of users’ attention could serve
as a means to assist users in spotting discrepancies in the
salutation (e.g., approaching the user with their last name
even though the impersonated person usually approaches
the user with their first name).

Encryption The final habit is the use of email encryption to
make it impossible for an attacker intercepting the email to
read its content. Here, the user state might hint at whether
users struggle with setting up email encryption in the first
place or whether they have considered encrypting an email
before sending a message.

4.2.3 Browsing. The third class of habits concerns users while
browsing. Here, of particular interest are situations in which users
are browsing in unfamiliar environments (hotels, public transport).

Encrypted Networks Many public WiFis, as found in hotels,
at airports, and in trains, are unencrypted. While tools, such
as VPN, help users protect themselves, these tools are often
unknown to users, or they forget to enable them. Knowledge
of the user state might help to build interventions that assist
users in protecting their Internet connection.

HTTPS When accessing and, in particular, authenticating on
websites, the use of HTTPS ensures the transmitted infor-
mation is encrypted. Here, again, knowledge of users’ states
might hint at users’ being unaware of this.

4.2.4 Applications and Devices. As users install new devices (e.g.,
a router or smart home appliance) or an app, these require proper
setup and maintenance.

Configuration The first step is usually the device’s configura-
tion. Optimally, the manufacturer ships devices/apps with
secure settings. Still, security settings might lead to devices
not working properly, resulting in users deactivating more
features than necessary. If a system identifies a high work-
load, this might hint at the user being overwhelmed with
the current security task. Hence, information could be better
targeted towards the knowledge/skills of the user.

Updates Updates are generally seen as annoying tasks, inter-
rupting users’ main tasks. Knowledge of users’ situational
awareness and attention might allow the request for an up-
date to be targeted at an opportune moment.

https://haveibeenpwned.com/
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4.3 Human State Detection
The following section provides an overview of human behavior and
physiological responses that are predictive of user states.

4.3.1 Behavior. The user’s behavior during interaction with a sys-
tem can be used to infer their state. In the following, we provide a
brief overview of various behaviors which can be captured and the
potential user states that prior research has investigated.

Task Performance There are multiple metrics of task perfor-
mance, including the number of errors, task completion time
(TCT), task accuracy, and user reaction time while doing a
given task. A large body of research shows these metrics to
provide insight into cognitive load [55].

Keystroke Dynamics Keystroke dynamics refer to the users’
behavior while typing, whether on physical buttons on a key-
board or virtual touch keyboards. Keystroke dynamics have
been extensively researched as an authentication method
(for a review, see [76]). Additionally, keystroke dynamics
can be used to infer cognitive load [20, 55] and are useful
indicators for emotion [62].

Speech Microphones are embedded in most devices we use
today (laptops, mobile phones, voice assistants). A change
in the users’ cognitive load can be measured through many
of the features of speech, such as tempo [25], pauses [51], or
lexical density [51]. In addition to cognitive load, emotion
recognition from speech is also a well-researched area [48].

Body Motion Movement of the whole or parts of the body is
a relevant indicator for many user states. Capturing body
movements can be done using on-body/on-device sensors
or cameras in the environment. Body posture and gestures
have been explored as an indicator for cognitive load [43].
Mouse Movement behavior during the interaction, such as
the speed/pauses of mouse movements, have been shown to
indicate attention [93] and cognitive load [11]. Additionally,
Electromyography (EMG), which refers to measuring the
activity of the muscles using on-body sensors, can indicate
user states such as stress and emotion [89].

4.3.2 Physiology.

Cerebral Among many neuroimaging techniques used to col-
lect brain data, Electroencephalography (EEG) and Func-
tional Near Infrared Spectroscopy (fNIRS) are two common,
non-invasive, and relatively light-weight methods that can
provide insights about the cognitive processes of the brain.
Both techniques are used to measure cortical activity [55].
In EEG, conductive electrodes placed on the scalp collect
electrical potentials between 1 and 100 microvolts. The col-
lected EEG data is then processed, and different features can
be extracted. Using machine learning techniques, prior re-
search has shown that EEG data can provide insights about
users’ cognitive load [55], engagement [42], and positive
and negative valence [40]. In contrast to measuring electri-
cal potentials with electrodes, fNIRS uses near-infrared light
within a range of 650 nm to 1000 nm to measure changes in
the concentration of Oxygenated (HBO) and Deoxygenated

Hemoglobin (HbR) in the human brain [55]. The device com-
prises light emitters placed on the human scalp to measure
the outcoming light, showing the amount of oxygen used.
fNIRS has been shown to detect mental workload [55] suc-
cessfully. While neuroimaging techniques had remained for
decades confined to lab settings, portable and light-weight
EEG/fNIRS sensors are becoming more available and enable
their usage in more realistic setups (e.g., in workplaces [41],
in lectures [42], while playing piano [94], and while driv-
ing [40]). Hence, we see the opportunity to use them in the
context of human-centered security.

Ocular The eye provides a fascinating entryway to the state of
the human body. Many types of eye movements (voluntary
and involuntary) can be easily captured using eye trackers.
Eye trackers can be stationary (attached to a display) or
wearable as part of an HMD/smart glasses. Capturing eye
movements has also been done on unmodified mobile phone
devices using their cameras. Eye movements have long been
researched as an interactionmodality and for evaluation. Sev-
eral eye movement features have been extensively explored
in prior research, including eye blinks, fixations (voluntary
movements focusing on an area of interest), saccades (the
shifting movement between two areas of interest), smooth
pursuit movements (following a moving object), and pupil
dilation, among others. Prior research has shown all these
eye features can be used to predict cognitive load [53–55].
Furthermore, eye gaze data has been extensively studied as
an (additional) form of multi-modal input for authentica-
tion schemes [49], or as an indicator for password strength
and reuse (cf. examples in Section 3 [5, 6]). Having been a
technology constrained to lab settings for decades, eye track-
ing is today affordable and robust enough for real-world
deployment, for example, in workplaces [45].

Cardiovuscular, Respiratory, and Nervous Systems The sys-
tems of the human body work closely together and influence
one another. Heart rate, its derived metrics (e.g., Heart Rate
Variability), breathing rate, and body temperature are all in-
fluenced by the human state (e.g., stress and emotional state)
and have strong relations to one another [55]. Additionally,
measuring and collecting these signals has become accessi-
ble to novice and expert users. Heart rate can be measured
using electrocardiography (ECG) and photoplethysmogra-
phy (PPG) in the time and frequency domains unobtrusively
using wearable devices (e.g., chest band, smartwatch). Prior
research showed that heart rate can give insight into users’
mental workload during different tasks, for example, in the
work context [27]. The respiratory system is responsible
for breathing and its regulation. Like heart rate, breathing
rate can be easily captured using wearable sensors. Research
has shown that cognitive workload impacts respiration [44].
Prior research has also shown that combining Heart Rate
Variability and breathing rate features and applying machine
learning classifiers can lead to a good classification of emo-
tions such as joy [52]. Finally, body temperature, regulated
by the nervous system and in close relation with the car-
diovascular system, can be an indicator of states, such as
stress and cognitive load. Body temperature can easily be
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Figure 5: Our paradigm enables novel interventions. Due to
the probabilistic nature, there is a possiblemismatch between
users’ actual habits and system predictions based on the user
state. Interventions must balance being annoying / creating
effort (top right) and putting users at risk (bottom left).

captured using thermal imaging cameras or using on-body
temperature sensors and combined with other smart wear-
able sensors (e.g., HR). Prior research explored the use of
thermal cameras to detect levels of cognitive load [2] and
stress [92]. Commercial smartwatches can capture many
of the aforementioned metrics, making these applicable in
organizational settings.

Dermal Another physiological response related to the nervous
system is electrodermal activity (EDA), measurable by apply-
ing currents to assess the conductance or resistance of the
skin [55]. EDA has been found to be successful at detecting
stress and emotional arousal in various scenarios such as of-
fice work [81], driving [82], or during interaction in VR [26].
EDA can be detected by many commercial smartwatches,
such as the Fitbit Sense.

4.4 Using the Research Space
We believe that the high-level perspective on physio-behavioral
security offered by the research space will be useful for researchers
moving forward. When positioning the described work on physio-
behavioral measurements in the research space (Figure 4), we can
see that most existing work is limited to certain quadrants. For
instance, the quadrant at the intersection of passwords and ocular
measurements would include comparatively many studies (e.g.,
[5, 6, 49]), whereas most quadrants are, so far, unexplored or under-
explored. We suggest that researchers could use the research space
to position the novelty of their research ideas but also use the
present paper to find usable security research that used, for instance,
similar sensor measurements but with a different security task.

Broadly, three major research directions can benefit from this
work. Firstly, behavioral and physiological data can enhance our
theoretical understanding of security habits, for example, through
understanding phenomena and deriving theories. Secondly, we sup-
port building enabling technologies; that is, researchers can explore
how meaningful data can be collected, which features are suitable
to make predictions, to build predictive models, and to assess how
accurately those work. Thirdly, researchers can build interventions,
that is, user interfaces using knowledge of user states. One purpose
of those interventions could be to protect users by helping them
take meaningful action (for example, pointing out the risks of a
weak password or raising awareness of a potential phishing attack).

An emerging challenge concerning interventions is coping with
probabilities. Figure 5 visualizes this challenge. Generally, any in-
tervention built on knowledge about user states tries to maximize
prediction accuracy to support making a correct prediction (top left,
bottom right). In cases where a system predicts secure user habits
and this is true, no intervention is needed. The most interesting
case is where the users’ habits are insecure, and this is correctly pre-
dicted by the system. In this case, an intervention can be expected to
be most effective. Challenging cases are a mismatch between what
the system predicts and how users behave: If the system predicts a
secure habit but it is in fact insecure, this puts the user at risk. Vice
versa, if the system predicts an insecure habit but it is in fact secure,
then this is annoying for the user. Future work could explore how,
depending on the application area, a balance can be found between
those two cases. One approach to address this could be to outsource
edge cases: for example, if the system is not sure about a threat (for
example, an email being phishing), then the response email by a
user could be checked by a security expert from the IT department.
This would reduce the burden on the user. At the same time, this
raises ethical concerns, and researchers should answer when and
how users should be informed about and consent to such practices.

A general question is how to choose areas in the research space
to focus on first. This choice could be guided by considering the
likeliness and severity of attacks. For example, automated attacks,
such as credential stuffing, are likely to cause more damage as
opposed to cases where, for example, attackers need to be physically
present (cf. shoulder surfing).

5 DISCUSSION
In the previous sections, we have sketched a research space, show-
casing the interplay between human-centered attacks and human
security habits to mitigate these attacks on one side and human
states and how they can be predicted on the other side.

Based on prior research and our reflections about the research
space, the following section will sketch and discuss a set of open
research directions.

5.1 Relevance of User States to Security
Contexts and Transfer Between
Security-Relevant Situations

So far, only isolated spots in the research space have been explored.
It is an open question of which user states are relevant to which se-
curity habits and which human-centered attacks can be prevented.
It appears that for attacks such as social engineering, the emotional
state, fatigue, and attention are of particular interest. For security
habits, engagement, and situational awareness seem promising
states to focus on. Workload and situation awareness seem to be
relevant across many areas, on one hand, because security is typi-
cally a secondary task and on the other hand. After all, most threats
in the digital world are not directly perceivable.

Once researchers have obtained a better understanding of how
different research areas inside usable security can benefit from an
understanding of user states, it is relevant to consider the extent to
which the knowledge gained in one area of UPS can be transferred
to other security-relevant situations.
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5.2 Privacy
Security and privacy often require a trade-off. Think, for example,
about the use of VPNs. While VPN offers security when using an
unencrypted network, it comes at the expense of privacy, as the
VPN provider will inevitably be able to observe the traffic. We
expect that there will be a similar trade-off between the security
that may be provided by collecting and utilizing sensor data and
new privacy risks while doing so. Future work could look at, but
not limit itself to, user concerns and privacy concerns emerging
from data sharing and data inference.

5.2.1 User Concerns. Research is needed to better understand end
users’ concerns regarding using physiological and behavioral data.
Prior work in the HCI community has looked at people’s views
towards novel sensing technologies, for example, thermal imaging
[80] and the use of EEG [74]. Methodologically, prior work gen-
erally demonstrated to users both opportunities and challenges
emerging from using the technology. To the best of our knowledge,
the opportunities of behavioral and physiological data for cyberse-
curity have not been assessed in prior work. It will be interesting
to see how perceive view this trade-off.

5.2.2 Data Sharing. Third parties could be interested in physiolog-
ical and behavioral data, including employers or insurance compa-
nies. It is an open question how people would negotiate the bound-
aries around their physio-behavioral data in the various spheres of
their lives. We see a particular need to explore how the interests
of users and employees could be preserved, be it through policy or
technical means. This closely relates to how technical means could
be implemented to protect users’ privacy. While protection might
work in cases where approaches are targeted towards a specific
context (at home, at work) or a user group (elderly, children), this
might become much more difficult in cases using personalization
(e.g., mechanisms adapting to the specific needs, skills, and level of
knowledge of an individual user).

5.2.3 Data Inference. Using sensors to capture behavioral and
physiological data creates large sets of personal data (e.g., distribu-
tion of workload and fatigue over the day, people’s interests, and
emotional state), which can create novel privacy concerns. The
generated datasets might, for instance, reveal health conditions still
unknown to study participants or end users (e.g., heart rate abnor-
malities). Such ethical concerns are rather new in Usable Security
and Privacy research but well-known in the medical field. Hence,
collaborations with medical staff and researchers are advisable.

5.3 Stakeholder View
Many stakeholders would be involved in the design, implementa-
tion, use, and maintenance of security approaches based on physio-
behavioral data. For designers and developers, the system complexity
may play a role. How can the required data be collected? Where is
data being stored? Where are classifiers trained? Where are models
being stored? How often do models need to be retrained?

From a marketing point of view, a relevant question concerns
suitable business models. The development, deployment, and main-
tenance of strong security mechanisms come at a cost. The question
remains whether it will, at some point, become a legal requirement

to provide secure systems and whether a high level of security
protection could become a purchase argument for end users.

From an end users’ perspective, future work should look at the
value proposition. At the moment, it is unclear how users would
judge the trade-off between added security and the use of sensitive
data, as well as the potential loss of control. This is likely to influence
their motivation to use such approaches. At this same time, Adams
et al. have shown that clearly communicating why certain types of
behavior and mechanisms are useful from a security perspective
increases users’ motivation [7].

The various stakeholders will likely have different views on
what “successful” physio-behavioral security interventions would
imply. Such indicators of success could include organizational cost,
behavior changes over time, and user experience.

5.4 Validity of Inferences Based On Sensor Data
It is an open challenge to understand and validate the inferences
that can be made based on various sensor measurements. Some
concepts that could potentially be inferred from sensor data are
highly complex. For instance, while various existing smartwatches
claim to measure stress, device manufacturers are not transpar-
ent about how such indicators are calculated, making it difficult
for researchers to investigate the validity of these indicators, in-
cluding their limitations. More research into the meaning one can
infer from sensor measurements is needed, and interdisciplinary
collaborations seem especially promising.

5.5 Methodological Challenges
Our paradigm holds a variety of methodological challenges.

5.5.1 Ecologic Data Validity. A fundamental challenge is how data
of high ecologic validity can be collected for systems built on behav-
ioral and physiological data, that is, data reflecting users’ natural
behavior. Much prior work has focused on collecting data under
controlled conditions in the lab. Still, it is unclear to which degree
user behavior in the lab is comparable to user behavior in the real
world. This challenge has been recognized by researchers, lead-
ing to an attempt to collect unbiased, real-world data. Examples
are the work of Buschek et al., who built an Android keyboard
to collect the natural typing behavior of users over several weeks
[22] as well as a research project funded by the German National
Research Foundation (DFG) exploring behavioral biometrics in the
real world1.

5.5.2 Access to High-Quality Measurement Devices. It can be costly
for researchers to acquire the neededmeasurement devices (e.g., eye
trackers, wearables) and get access to sufficiently large participant
pools to gain quantitative insights. It seems promising to build and
strengthen collaborations with industrial partners to gain access
to realistic settings in which human-centered physio-behavioral
security might make important contributions.

From a research perspective, medical-grade devices could be
used to demonstrate the general feasibility of approaches. However,
whether or not these approaches will be put into practice depends
on whether off-the-shelf end-user technology will be ready to de-
liver data at the required level of detail and quality.
1Scalable Biometrics Project: https://gepris.dfg.de/gepris/projekt/425869382

https://gepris.dfg.de/gepris/projekt/425869382
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5.5.3 Uncertainty of Predictions. Future work should also address
the question of which approaches to predictive modeling are most
suitable in the context of physio-behavioral security. Here, a signif-
icant challenge concerns the communication of uncertainty asso-
ciated with predictions. For instance, there is a likelihood of false
positives (e.g., warnings that are triggered based on a physiological
state when it is not warranted), which need to be explained and
communicated to research participants as well as potential end
users to avoid a loss of trust in the security system.

An interesting question in this regard is balancing accuracy
and privacy. For example, systems could be built based on user-
independent models; that is, a predictive model would use data of
several users with a certain profile. This would allow for anonymiza-
tion. At the same time, such user-independent models likely yield
lower accuracy. In contrast, a higher accuracy may be achievable
using user-dependent models. However, this would require data
on a per-user basis. Future work should explore when to priori-
tize which approach. One idea here would be to consider different
‘risk profiles’: for example, to some, a bank account might seem
more sensitive and thus worthy of stronger protection than a social
media account. usually requires stronger protection than a social
media account. Hence, the former account might rather be pro-
tected through a user-dependent model. User-centered methods
(e.g., co-design) should be used to collaboratively define acceptable
vs. unacceptable predictive models in collaboration with end users.

5.5.4 Social Desirability. Research participants’ knowledge about
data collection might influence their behavior. For instance, know-
ing that one’s physical activity is being recorded by researchers
might increase the desire tomovemore to seemmore active. Such ef-
fects need to be carefully studied and quantified so that researchers
can estimate how much an observation setting influences the par-
ticipants’ behavior and situate study results accordingly.

5.6 Novel Threat Models
An open question is which novel threat models the paradigm en-
ables. Regarding behavioral biometrics, prior research explored
so-called mimicry attacks [65], that is, attackers trying to mimic
the victim’s behavior. Beyond this, fine-grained knowledge about
user states might provide valuable information to attackers when
and how to perform attacks best. Still, such knowledge is first and
foremost valuable for end-users as they could use it to adapt their
habits based on their states (for example, working on emails at
times of the day when they are likely to spot phishing emails best).

5.7 Other Application Areas
The approach has implications beyond security applications.

5.7.1 Privacy Research. Using sensor data could also be helpful in
the context of privacy habits, as research on privacy shares many se-
curity research challenges. For example, privacy-related tasks, such
as setting privacy permissions, are also secondary tasks for which
a relatively low user motivation can be assumed. Certain measure-
ment data could correlate with more or less privacy-preserving
habits, and by understanding such correlations, we might tailor
interventions to a person’s behavior or physiological state. Privacy

tasks might equally benefit from knowledge of the user state. Fu-
ture work might set out from our research space and replace the
categories ‘human-centered attacks’ with ‘privacy violations’ and
’human security habits’ with ‘human privacy habits’. Interesting
aspects to investigate include how people’s states are influenced
while setting, managing, or revoking privacy permissions. Vari-
ous applications exist, including smartphone permission, browser
permissions, and permissions for IoT devices.

5.7.2 Fake News. An equally interesting research area is fake news.
Prior research examined how users’ gaze and mouse movement be-
havior differs when perceiving fake content compared to legitimate
content [4]. Future research could expand upon this to understand
how user states are affected beyond the perception of fake news,
for example, during verifying and reporting fake news.

5.7.3 Deep Fakes. Deep Fake research might benefit from the pro-
posed paradigm shift. Researchers might explore how situations
in which users are exposed to deep fakes influence their state. An
increase in attention towards the video of a participant in an online
meeting could hint at deep fakes and be used to propose strategies
for other meeting attendees to verify the participant’s identity.

5.8 Need for Interdisciplinary Research
In this paper, we take a view from the usable security and privacy
perspective towards the proposed paradigm. However, this para-
digm is of interest and can strongly benefit from the involvement
of different disciplines. On one hand, this includes other research
areas in computer science: novel user interfaces will benefit from
the expertise of the HCI community; privacy researchers can help
with protecting users’ privacy; and AI researchers can help with
creating more accurate (predictive) models. On the other hand, this
work can strongly benefit from joint work with the social sciences,
medicine (cf. Section 5.2.3), as well as policymakers.

6 CONCLUSION
Weproposed a paradigm shift towards physio-behavioral approaches
to security, that is, approaches leveraging knowledge of human be-
havior and physiology with the ultimate goal of building novel,
human-centered security interfaces. After providing three moti-
vating examples, we sketched a research space introducing three
dimensions and explaining their interplay. The research space is
meant as a starting point for the research community to explore
the proposed paradigm. We complement our work by elaborating
on opportunities and challenges that could be explored in future
work and briefly discussing application areas beyond security.
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