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Figure 1: We assess the effects of four contextual factors on user identification: (1) Body parts, i.e. how different parts of the
human body compare to identify. (2) Activity, i.e. how motion data collected in different physical activities affect identification
quality. (3) Hold, i.e. the act of holding objects in one or two hands. (4) Task, i.e. how a task that the user performs elicits unique
behavior. Insights on user identification quality are indicated by ‘<’ and ‘≈’, and the top 5 body parts are marked bold.

ABSTRACT
Past work showed great promise in biometric user identification
and authentication through exploiting specific features of specific
body parts. We investigate human motion across the whole body, to
explore what parts of the body exhibit more unique movement pat-
terns, and are more suitable to identify users in general. We collect
and analyze full-body motion data across various activities (e.g.,
sitting, standing), handheld objects (uni- or bimanual), and tasks
(e.g., watching TV or walking). Our analysis shows, e.g., that gait as
a strong feature amplifies when carrying items, game activity elicits
more unique behaviors than texting on a smartphone, and motion
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features are robust across body parts whereas posture features are
more robust across tasks. Our work provides a holistic reference on
how context affects human motion to identify us across a variety of
factors, useful to inform researchers and practitioners of behavioral
biometric systems on a large scale.
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1 INTRODUCTION
Biometrics have a long history in security research to uniquely
identify a person and enable authentication to a system [12, 45]. A
major advantage, compared to traditional authentication methods
such as passwords or PINs, is that biometric data can be observed
implicitly in the background for continuous and passive authentica-
tion during interaction [41, 42]. Suitable authentication scenarios
relate to everyday activities, such as driving a car [13], interacting
with a computer [4], talking on the phone [15], or on the go [10].

A plethora of research leverages bodily motion for identifica-
tion, often utilizing features of the user’s feet and legs [11]. Other
work focused on distinct parts of the human body, such as hand
movement obtained by a smartwatch [23], touch operations on a
smartphone [9], or headmotion through head-worn devices [25, 39].
This research line can be enhanced multimodal [35], such as lever-
aging a set of body locations points obtained through a depth sensor
[29] or combined hand and head motion in virtual reality [32].

While prior art contributes to the knowledge and utility of secure
systems and authentication in the investigated scenario, the insights
are often specifically tailored to the particular device setup and use
case. However, there are many contextual factors with the potential
to influence the assessment of unique user traits. For example, if a
sensor is on a different part of the body, the user holds an object
in the hand or performs a particular activity. Insights into these
factors can become highly relevant for many of the investigated as
well as future scenarios, to adapt a potential authentication system
to a given context, and to inform under which circumstances the
recognition may work better or worse. For example, Saad et al.
have recently investigated shoe and floor variations for gait recog-
nition, finding novel insights into how these contexts affect the
data quality [36]. Yet, work exploring how such contextual factors
may affect user recognition broadly is scarce, partly because it is
challenging to study behavioral systems beyond the environment
and the technology used (sensors, cameras).

We pursue an approach complementary to the device-specific
nature of the prior art, by focusing on a holistic human-centric
approach. Our objective is to understand (1) how the many parts of
the human body contribute to the capability to identify a person,
and (2) the influence of high-level contextual factors. As personal
computing and sensing technologies are continuously evolving,
human and biometric traits represent the constant across device
and sensor landscapes. Our objective is to inform work leveraging
body motion, e.g., for full-body authentication, using selected body
sensors, or identification systems adaptive to varying contexts.

We present a holistic analysis of body motion for user identifica-
tion across a range of contexts (cf. Figure 1). Our primary factor is
the body part where we compare 18 different points across the body
from head to toe. Second, we assess the user’s activity, particularly
the physical activity ranging from sitting to walking in a room.
Third, we analyze how holding an object in the hand allows unique
behavior during walking to be elicited, which we vary for none, uni-
and bimanual cases. Lastly, we compare different user tasks, from
interacting with a smartphone or watching TV to having a physical
goal. To accomplish this, we collected data from 22 users who were
engaged across two sessions with these contexts. Users wore a full-
body motion tracking suit to collect high-precision movement and

position data. Furthermore, we compare different machine learning
methods of user classification and report on parameter analysis.

Among others, we found that the most useful body parts to elicit
unique behavior were the arm, forearm, hand, neck, and toe. Regard-
ing activities, we found that when users stand up, the recognition
is more accurate than when sitting (down), but overall walking
led to the best user identification accuracy. More unique behavior
was elicited when holding objects. In the investigated tasks, we
found that there is no strong discrepancy between using a phone
or watching TV (both sitting), but content matters. Games led to
more unique behavior than chatting (on the phone) and animation
was more effective than education and horror movies (TV).

Our contribution is threefold. First, we contribute a full-body
motion dataset for 22 users across 11 different tasks involving vari-
ous contextual factors. Second, we present an analysis of the data
across the contextual factors for the purpose of user identification
using several machine learning models. Third, we provide a set of
insights, including how different body parts contribute to recogniz-
ing user identity, as well as the impact of motion, carrying objects
as well as perceiving different content on a phone and TV.

2 RELATEDWORK
Biometrics are widely used for user identification and authentica-
tion. Fingerprint, face recognition (i.e. FaceID), iris scan, and voice
recognition are integral in smart devices. Various body parts have
been focused on, such as ear and body contact [15], hand shape [38],
or hand veins [21]. Fundamental categories are implicit and explicit
approaches [3, 17, 40]. An implicit approach utilizes behavioral
biometrics of the user in the background [12]. Orr et al. showed it
is possible to identify people from their footstep force on a smart
floor [31]. Keystroke dynamics have been used as a behavioral bio-
metric for user identification [6, 19, 28]. Other modalities include
eye movements as a response to visual stimuli on a display [33, 44],
authentication when driving [13], keyboard typing on a computer
[4], and mobile typing when the user is on the go [10].

Behavioral biometrics is often facilitated through body motion,
a human mechanic inherent to physiological and behavioral traits.
Gait is a prominent example of an unobtrusive biometric identifica-
tion modality [11, 36]. Furthermore, the smartphone was explored
for user identification, e.g., using the accelerometer for gait detec-
tion [11], or normal [8, 41] and altered touchscreen interactions
[26]. Using depth cameras, Hayashi et al. identified users by hand
waving [14] and Munsell and colleagues used skeleton points of the
body [29]. Researchers identified users by continuously tracking
and identifying hand movements on tabletop systems [2]. Wear-
ables have been assessed to recognize users in physical, VR, and
AR environments [22, 25, 32, 39], including contexts such as ball-
throwing [22], overhead interactions [24, 30, 43] and walking [39].

Prior work shows how behavioral biometrics can serve to accu-
rately identify users, but the research is fragmented across various
sensors, devices, and activities. Although focused on a more tech-
nical perspective of the Internet of Things, Huang et al. accurately
pointed out the issue: “Traditional efforts [...] mainly rely on either
dedicated sensors or specified user motions, impeding their widescale
adoption” [16]. We aim to go beyond these boundaries, exploring
the variety of user motions that the human body can exhibit.
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Additionally, our investigation can inform research on multi-
modal biometrics [5, 7, 35], where limitations of a single modality
may be overcome by including multiple sources of information to
infer the identity [34, 35]. Recent work in virtual reality, which
provides high-precision data across multiple sources, inspired our
work. Pfeuffer et al. investigated how the combinations and spatial
relations between hand, head, and eye movements can become
useful as a behavioral biometric during the user’s normal VR in-
teractions [32]. They compared this across four tasks, and find
that head leads to the most accurate results and that pointing and
grabbing tasks led to better user authentication results than typ-
ing and walking. Liebert et al. studied two virtual gaming tasks
for both hand and head motion as physiological biometric factors
[25]. They achieved high accuracy especially when physiological
features were normalized across users. More recently, Saad et al.
have presented an investigation of gait identification that, similar
to our work, regarded a set of contexts [36]. Their context factors
included types of shoes, walking platforms, objects carried, and
other activities, for a system based on a mobile phone IMU sensor.
Our work complements their research by considering a large set
of new context factors and by capturing the whole body with a
variety of sensor locations.

Our work extends prior work on sensor- and context-specific
studies investigating multiple body parts and potential tasks. What
sets ourwork apart is taking a step back and considering the entirety
of the human body beyond a head-worn or handheld device. Also,
we investigate four context factors. This can inform future work
on user identification and authentication systems at scale.

3 CONTEXT FACTORS AND USE CASES
Complementary to prior work on singular use cases and threat
models, we focus broadly on the human body for motion-based
identification to inform use cases where motion sensing is possible.
In this section, we describe and motivate the four main contextual
factors we analyze for this purpose. We also describe exemplary use
cases for each factor. The context factors are illustrated in Figure 1.

3.1 Body Parts
As shown in related work, the majority of behavioral biometrics
papers focus on a single or a small set of sensors related to positions
on the human body. Complementary to these efforts, we explore
the effects of various body parts across the whole body and how
they are potentially useful to capture unique behavior.

To achieve this, we utilize a state-of-the-art motion tracking
system where the body is tracked with a motion suit. This extends
prior work on, e.g., perspective-based skeleton tracking [29] by
enabling full 3D tracking in the environment. Our system enables
inference of 18 distinct body parts (cf. Figure 1, top left). This also in-
cludes commonly considered body parts, and thus can be of interest
to projects using head [39], hands [11], or feet [46] to understand
how they compare to other body parts. Understanding the relative
differences in user identification quality can be useful to inform
use cases where only a part of the body may be sensed, e.g., when
using only a few on-body sensors (head-worn device, smartwatch)
or only parts of a person are visible to an external camera (e.g. user
partially occluded by an object or inside a window/car).

3.2 Activity
Activity is one of the main factors of a user’s context, especially for
interaction with computers [37]. We focus on fundamental physical
activity as it directly contributes to motion behavior and as it is
part of many contexts of use. The main states are a person sitting
or standing and walking to get to another position. Walking has
been extensively investigated for gait recognition [11]. Therefore,
it represents an ideal baseline to compare to other activities. We
also explore the transition from standing up to sitting down.

This factor can be interesting for several use cases. A behavioral
biometrics system can consider the user’s activity to decide which
features to exploit. In a more dynamic environment like public
transport or an office entrance, body motion can be useful as a
behavioral biometric. For public transport, when users enter, e.g.,
a bus their ticket could be automatically validated. When users
sit down on a train, a system could infer if the user is sitting at
their booked seat. Office building entrances could automatically
identify the employees and provide access to the building. This
is also applicable to a smart home environment. When users are
sitting on their couch to watch TV, the system can infer the user’s
identity to automatically log in to the Netflix account.

3.3 Hold
Similarly, a fundamental factor is holding an object in the hand.
Especially, considering the well-documented research on gait, it is
not clear whether holding an object in either one or two hands may
affect the identification result. Therefore, we particularly focus on
this factor for walking conditions. There are many potential use
cases where this may occur. For example, in an office environment
users may walk to a meeting room with documents, a laptop, or
a cup of coffee held. When they enter the room, they could be
authenticated and automatically logged onto their devices, and
other users can be notified who entered. Another use case where
users often carry things is shopping. After shopping, users may
walk to their car with bags in their hands. The car could infer who
is approaching and provide easier access to the user. Behavioral
authentication systems should infer in what conditions users are
walking, and consider how these may affect identification quality.

3.4 Task
The user’s task, typically directed towards a particular objective,
is likely to have a substantial effect on user behavior. However
what constitutes a task is impacted by many factors, such as the
user device, the activity involved, and the goal the user aims to
accomplish. As a first high-level approach, we consider three cate-
gories for tasks. Two categories are defined by the device used, a
smartphone, or a large display, which are commonly used in many
contexts. The other task is related to physical activity, where the
user is tasked to walk to a particular position. Within the devices,
we further vary the task. For the smartphone, we consider a chat
and a game task as two frequently used applications in mobile
interaction that are however distinct in their nature. For the TV
display, we consider three distinctive genres in television: watching
an educational video, a horror video, and an animated movie.

Potential use cases are broad. Interaction with a phone is a com-
mon activity that can accompany many security scenarios, from
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a) Sitting b) Stand c) Walk d) Hold object e) Watching f) Phone use

Figure 2: Pictures showing the tasks of the study participants:
walking (a-d), watching (e), and phone use (f).

(second-factor) authentication to the actual device, or to authenti-
cate users in a hospital waiting room (to avoid having to register
manually by waiting in a long queue). Previous work has shown
that phone interactions on their own can be used as a behavioral
biometric, e.g. when typing [9]. We extend these works at a higher
level of task, by analyzing the body motion around the use of the
phone allows us to make further user inferences. Such systems
could be complemented with body-based features, if additional
body tracking is available or data usage on the phone may not be
desirable (e.g., for privacy reasons). In these cases, the app and
interface on the phone can potentially be designed to elicit unique
user behavior; an authentication scheme specific to the hospital
waiting room, for instance, could be a health learning game that
users can play to authenticate. A large TV scenario, on the other
hand, lends itself more to typical home cinema scenarios, as well
as public waiting scenarios such as when waiting at a bus or train
station and viewing content on a public display.

4 DATA COLLECTION STUDY
We collect user motion data1 across 2 sessions and the contextual
factors outlined above. The goal is to build the base for a follow-up
investigation of user identification related to motion and context.

4.1 Task and Study Design
To include the context factors as outlined in the previous section, we
designed a studywith 11 tasks that occurred counterbalanced across
participants. The 11 tasks were divided in 3 categories: walking,
watching TV, and smartphone use. We chose a within-subjects
study design with repeated measures, over two sessions with at
least 2 days in between. The category order as well as the tasks in
each category were counterbalanced across participants. The three
categories are described in more detail below.

4.1.1 Walking. For this task participants would sit down on a sofa,
stand up again and get an object from a large table about 4 meters
away, return, and sit down again. The approximate walking path
is indicated as a dotted line in Figure 3. This process is repeated
for each of the following 4 conditions 10 times: walking with (1)
empty glasses, (2) water-filled glasses (3) empty glasses and plates
(4) without carrying an object. Ten plates and ten glasses (either
empty or filled with water) were prepared before each condition on
the table to accommodate the 10 repetitions. The activities standing
up and sitting down were derived post-hoc (see Section 4.5).

1The dataset is publicly available at https://go.unibw.de/unique-body-moves

TV
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Table
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Room

Figure 3: Top view of our study setup showing the object
location and room size with dimensions.

4.1.2 Watching TV. Participants would sit down on the sofa and
watch different videos. We showed three different videos: (1) an
animation video (2) a learning video from Youtube and (3) a snippet
from a horror movie. Participants were not given any hints on what
kind of video they would be watching to elicit unique personal
reactions. All videos were between three and five minutes long.

4.1.3 Smartphone Use. The last task was the use of smartphones.
Participants were asked to sit on the sofa and use a smartphone
under two conditions: (1) playing a game2, and (2) texting using a
common application (Whatsapp). Each of the two tasks was finished
after five minutes. For the game, the participants were provided
with a smartphone with the game "Cut the Rope". The choice of
the level to play was left to the participants themselves, and there
were also no restrictions towards the number of levels or the score.
In the chat condition, participants were asked to use their own
smartphones so they could use their normal keyboard layout and
smartphone size which affects how they hold it. The chat partner
for this task was always a researcher. The theme of the chat was
casual small talk. In addition, the researcher had a list of questions
to aid the conversation flow if necessary.

4.2 Setup and Apparatus
We use an OptiTrack system3 with 20 cameras for full body tracking
along with 37 markers on the suit used to derive 18 distinct body
parts. The markers were distributed as instructed by the tracking
software to create a full body model4. We logged the positions of all
markers on the suit at a frame rate of 90Hz using a C# script. The
environment included a sofa (170 × 90 × 62 cm) placed opposite to
a television (55 inches) on a table with height 1m and 2.2m away
from the sofa and 94 cm from the rear wall holding the cameras. A
top view of the setup can be seen in Figure 3. A table (80 × 80 cm)
with objects for the walking task was placed on the left. 10 plates
and 10 glasses were placed on top at previously marked positions
to ensure reproducibility. Participants used an LG G6 smartphone.

2https://play.google.com/store/apps/details?id=com.zeptolab.ctr.ads&hl=en (last ac-
cessed 21/06/2023)
3https://optitrack.com/ (last accessed 21/06/2023)
4Marker distribution: 3 on the head, 1 on each shoulder, 1 on the chest, 3 on the back,
3 on each arm, 3 one on each hand, 4 on each leg, 2 on each foot, and 2 on the front
and rear pelvic bone

https://go.unibw.de/unique-body-moves
https://play.google.com/store/apps/details?id=com.zeptolab.ctr.ads&hl=en
https://optitrack.com/
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Each body part was tracked as coordinates (x, y, z) according
to the 3D tracked space. There are five body part features that are
available for both the left and right sides. Due to a tracking error
in the software, only one side is available for the shin, toe, and foot.
As illustrated in Figure 1, we tracked the following body parts:

• Left body side: Shoulder, arm, forearm, hand, thigh.
• Right body side: Shoulder, arm, hand, forearm, thigh.
• Other : Hip, abs, chest, neck, head, shin, toe, foot.

4.3 Procedure
In the first session, all participants received a brief introduction
and filled in the demographics and consent forms. After that, par-
ticipants were asked to put on the full motion tracking suit (pants,
jacket, headpiece and shoe) and one of the researchers attach the
required markers. Once the participants wore the suit the tracking
system was calibrated. Next participants performed the 11 tasks
as described in Section 4.1. At the end, we asked if they had seen
the videos or if they had already played the game before. The study
lasted between 45–60 minutes including breaks between tasks.

4.4 Participants
We recruited 22 participants (13 female) between 18 and 36 years
(𝑀 : 23.73, 𝑆𝐷 : 3.93) using the university mailing lists and social
media platforms. Participants were either students from the local
university or employees with mixed backgrounds and were com-
pensated with 10 Euros. Users had little experience with motion
tracking (M: 1.41, SD: 0.58) as indicated on an experience scale from
1 (no experience) to 5 (very experienced).

4.5 Data Preprocessing for Activities
Active walking tasks included standing up, walking, potentially
fetching items and sitting down again. Start and end are identical
in all walking conditions (participants placed the objects they were
supposed to carry on a table before sitting down again). To separate
walking from sitting and standing tasks, we use the participants’
absolute position relative to the couch using a proximity and height
threshold. We found that on average, sitting down took 0.89 s (ses-
sion 1) and 0.9 s (session 2), and standing up took 0.83 s and 0.85 s
respectively. Walking took on average 8.12 s in the first and 7.67 s
in the second session. This aligns with our expectations and fits a
typical time to perform these activities.

4.6 Dataset Limitations
This user study provides a high precision dataset on body motion
across tasks with the following limitations. The motion tracking
system could wrongly detect the posture of a user due to insufficient
visibility of the infrared markers. This can happen when users sit
down and themarkers at their back are hidden or due to fast walking
speed. However, such an issue was consistent for each user, with
no effect on the analysis across users. Ecological validity may be
limited, as the study took place in our lab environment with users
wearing a motion suit. This is a compromise we take to be able
to study users at high precision and compare the many context
factors without external influence. To better quantify this effect,
we asked how normal users were able to behave in our setting (1:

Motion Posture (relation to body center) 

Figure 4: Types of features for the identification analysis

not normal to 7: normal). Users provided an average rating of 5.64
(SD=0.98), indicating only little deviation from normality. Finally,
a larger number and diversity of participants would potentially
allow better identification accuracy estimates. However, we do not
aim for the highest possible accuracy – prior work showed such
results and this strongly depends on the dataset too. Our focus is
on understanding the context factors, where relative differences
between the conditions matter most.

5 MODELING AND EVALUATION METHOD
To facilitate identification we map a feature vector computed from
a time window of data to one of the classes corresponding to the
task and user. We compare Random Forest (RF), K-Nearest Neighbors
(KNN), Support Vector Machine (SVM) and Multilayer Perceptron
(MLP). For RF, KNN and SVM we use the implementation of the
scikit-learn library. ForMLP we used Keras with tensorflow backend.
We report accuracy as the number of correct predictions (target class
received highest score) divided by the total number of predictions
made. The data was split into two equal halves (corresponding
to the first and second sessions) as training and testing sets. Data
modeling depended on the task: 10 seconds were used for the seated
tasks, and we used the full duration (at 90Hz) for the rest.

5.1 Extracted Features
We derive two feature types from the 18 body part positions to
model the spatial behavior of the user (Figure 4).We considermotion
as a a descriptor of how the user physically performs activities such
as walking, sitting, or standing. It is computed as the delta of two
consecutive frames. Second, we consider posture as a metric that
describes how the user’s body parts are situated in relation to each
other. This can be useful to better describe users in static activities,
such as sitting. We compute this by subtracting all body parts from
a reference point (users’ chest). Posture is interesting as it more
explicitly describes the physical features of the user’s body, e.g.
relative length of the arms.

5.2 Time Window Selection
Each frame contains the motion𝑚𝑏 = (𝑥,𝑦, 𝑧) of all body parts 𝑏.
To capture the temporal aspect we concatenate the motion data
from Δ𝑡 frames 𝑓𝑡 , 𝑓𝑡+1, . . . 𝑓𝑡+Δ𝑡−1, to form a new sample, hence
modeling motion of body parts over Δ𝑡 frames. Compared to the
common abstraction of computing features on time windows (e.g.
avg, SD, min, max) this approach allows us to retain the raw data.
To find the optimal time window Δ𝑡 per task, we trained RF with
n_estimators=30 models using all body parts and several time win-
dows Δ𝑡 . We then computed the average accuracy per time window
across features. Table 1 shows the optimal time window Δ𝑡 .
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Table 1: Optimal time windows across tasks

Task Δ𝑡 (frames)
All walking tasks 70
Stand up 40
Sit down 30
Texting 15
Play game; watch animated 30
Watch horror movie 15
Watch learning video 10

5.3 Multi-class Classifier and Parameters
We trained a multi-class classifier (i.e. one class per participant)
for each body part, and all body parts, with optimized time win-
dows Δ𝑡 . For training, we used RF with n_estimators=30. Other
hyperparameters had default values.

5.4 Feature Optimization & Classifiers
To investigate optimized feature sets per task, we used greedy top-
down feature selection [20]. We start training with all features,
repeatedly iterating over all remaining features, and trainingmodels
without the chosen feature. If one of those models achieves a higher
accuracy, the respective feature is removed from the feature set
and the process is repeated. It stops if none of the features leads
to an improvement in accuracy when dropped from the feature
set or when only one feature remains. For training, we used RF
with n_estimators=50. Table 2 shows feature optimization results
with the determined best feature set and resulting accuracy. We
then compared the user identification accuracy between different
classifiers. Time windows for all classifiers are based on Table 1. For
RF we optimized n_estimators from the set [100, 200, 300, 400, 500].
For KNN we optimized the number of nearest neighbors k from
the options [5, 10, 15]. For SVM we chose the optimizing parameter
C from the options [0.1, 1.0, 10], and for MLP we tried different
numbers of layers and units per layer. Results can be seen in Table 3.

6 RESULTS
If not stated otherwise, we report and compare the results with
regard to user identification accuracy with the RF classifier as it
yielded the highest accuracy among the models. The diagrams show
the mean of the identification accuracy across the presented factors,
and the error bars denote 95% CI of the given conditions. We use
accuracy as our main metric. With 22 users the guessing baseline
is 1/22 = 4.54%, which is surpassed by all results.

6.1 User Identification Across Tasks
Figures 5 and 6 show accuracy across tasks for motion and posture
features. We describe the main findings below:
Motion features may identify users better : Comparing motion and
posture features, we find that motion features achieve a higher
accuracy (Max = 59.21% in walking) in several tasks than posture
features (Max = 34.95%). However, this difference is not statistically
significant as shown by repeated measures ANOVA, 𝑃 > .05.
Identification most accurate when walking: Using the motion fea-
tures, a substantially higher accuracy can be achieved for walking

tasks (40.75% to 59.21%) than, e.g., static tasks (chatting with 6.64%
or watching learning videowith 9.45%). Among the posture features,
walking tasks are more accurate as well although the discrepancy
is less pronounced (e.g., 13.52% for chatting vs. 32.36% for walking).
For the motion features, a repeated measures ANOVA showed a sta-
tistically significant effect of the task on the classification accuracy
(𝜒2(10) = 2060, 𝑃 < .001). In the watching task, the stimuli, animated
movie (𝑀 = 13.8; 𝑆𝐷 = 1.9), horror movie (𝑀 = 9.7; 𝑆𝐷 = 2.2), and
news (𝑀 = 9.44; 𝑆𝐷 = 1.67) showed statistically significant effect
on the classification accuracy, (𝜒2(2) = 48.49, 𝑃 < .001). Pairwise
comparisons showed a significant effect on each pair with 𝑃 < .001.
In addition, repeated measures ANOVA also showed a significant
effect of the walking tasks (𝑀 = 47.7; 𝑆𝐷 = 2.46) and sitting tasks
(𝑀 = 9.9; 𝑆𝐷 = .95) on accuracy (𝜒2(1) = 4069.23, 𝑃 < .001).

For the posture features repeated measures ANOVA showed
a statistically significant effect of the task on the classification
accuracy, (𝜒2(10) = 32.69, 𝑃 < .001). However, no effect was found
for the stimuli in the watching tasks on the classification accuracies,
𝑃 > .05. Finally, we found a significant effect of the walking (𝑀 =

32.1; 𝑆𝐷 = 7.6) and sitting tasks (𝑀 = 19.6; 𝑆𝐷 = 3.98) on the
classification accuracy, (𝜒2(1) = 83.5, 𝑃 < .001).
Walking identification is higher with objects: Within the walking
conditions we found accuracy to increase with the number of items
held. The highest accuracy was achieved for walking with glasses
on a plate at 59.21%, which is the most mass users carried. This is
closely followed by walking with filled (56.63%) and empty glasses
(53.01%). All these tasks have a largermargin to the baseline walking
task without any handheld objects at 40.75%. Repeated measures
ANOVA showed statistically significant effect of the number of
items on the accuracy of the number of items (no items (𝑀 =

40.75; 𝑆𝐷 = 2.75), empty glasses (𝑀 = 53; 𝑆𝐷 = 3.21), filled glasses
(𝑀 = 56.83; 𝑆𝐷 = 3.58), glasses and plates (𝑀 = 59.21; 𝑆𝐷 = 2.93))
on the accuracy of the classification, (𝜒2(1) = 377.38, 𝑃 < .001). A
pairwise comparison also showed statistically significant difference
between all pairs with, 𝑃 < 0.05.
For static tasks, posture is more accurate than motion: Considering
the 7 tasks where users were sitting, posture features led to better
identification. Accuracy was higher for chatting (+6.77%), sitting
down (+18.99%), watching a learning video (+7.91%), watching a
horror movie (+8.38%), playing a game (+14.65%), watching an an-
imated movie (+5.1%) and standing up (+3.54%). The aggregated
results in Figure 9 show the trend of static vs. movement-based
tasks. However, we could not find statistically significant differ-
ences using paired sample T-test, 𝑃 > .05, this suggests that more
investigation has to be carried out.
On the mobile phone, games identify users better than chatting behav-
ior: We found that for both motion and posture features, playing
a game led to higher identification accuracy than chatting. The
effect is, however, more pronounced for posture (+11.45%) than
motion (+3.58%). Games potentially induce a more unique behavior
through their game-play dynamics, compared to chatting which
is quite standardized (i.e., fingers are mostly on a predefined area).
A repeated measures ANOVA test showed a statistically signifi-
cant effect of the application type on the classification accuracy
for the chatting (𝑀 = 6.73; 𝑆𝐷 = .90) and games applications
(𝑀 = 10.32; 𝑆𝐷 = 1.46), (𝜒2(1) = 199.92, 𝑃 < .001).
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Figure 5: ID accuracy ofmotion features per task Figure 6: ID accuracy of posture features per task

Figure 7: ID accuracy ofmotion features per body part Figure 8: ID accuracy of posture features per body part

Figure 9: ID accuracy grouped by tasks Figure 10: ID accuracy grouped by body group

Standing up is more consistent for user identification than sitting
down: Looking at the stand/sit tasks, we find that similar accuracy
is obtained for standing up for both motion (28.82%) and posture
features (32.36%). However, for sitting down, there is a large gap
between motion and posture (9.32% vs. 28.31%), indicating that
standing up may trigger more unique motion behavior. A potential
reason is that users were free to choose where to stand up while
sitting down on the same couch (i.e. same height and position).
This was also proven statistically where repeated measures ANOVA
shows statistically significant effect of the task standing up (𝑀 =

28.81; 𝑆𝐷 = 2.9) and sitting down (𝑀 = 9.32; 𝑆𝐷 = .89) on the
classification accuracy (𝜒2(1) = 945.67, 𝑃 < .001).

6.2 User Identification across Body Parts
Figures 7 and 8 show the identification accuracy for each feature
type, split by body part. As the posture data was computed relative
to the chest, we exclude the chest feature here. The results point to
the following findings:
All features lead to highest identification accuracy: Across both fea-
ture types of motion and posture, the best identification results
were achieved using all features. However, we find that for motion,
single features such as the left arm or hand, are only marginally
less accurate. This indicates that a system can potentially only track
e.g. the hand and thus substantially decrease tracking complexity.
For posture only, all features (37.08%) have a slightly higher gap to
the second highest (31.87%), indicating that for this type of feature,
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Table 2: Feature sets with the highest accuracy determined by a top-down greedy algorithm for each task.

Activity Body part set
Walk+no object (52.79%) Hip, abs, chest, neck, arm L+R, forearm L+R, hand L+R, shoulder R, thigh L, shin, foot, toe
Walk+empty glass (62.40%) Hip, chest, neck, head, shoulder L+R, arm L+R, forearm L+R, hand L+R, thigh L+R, shin, foot, toe
Walk+filled glass (67.49%) Hip, chest, neck, shoulder L+R, arm L+R, forearm L+R, hand L, thigh L, shin, foot, toe
Walk+glass+plate (69.73%) All body parts
Stand up (35.92%) Hip, abs, chest, neck, head, shoulder L+R, arm L+R, hand L+R, forearm R, thigh L+R, shin, foot, toe
Sit down (11.15%) Hip, abs, chest, neck, head, shoulder L+R, arm L+R, hand L+R, forearm R, thigh L+R, shin, foot, toe
Texting (9.52%) Abs, chest, neck, shoulder L+R, arm L+R, forearm L+R, hand L+R, thigh L+R, shin, foot, toe
Play game (14.89%) Hip, abs, chest, neck, head, shoulder L+R, arm L+R, hand L+R, forearm R, shin, thigh R, foot, toe
Watch animated (19.36%) Hip, abs, chest, neck, head, arm L+R, hand L+R, shoulder R, forearm R, thigh L+R, shin, foot, toe
Watch horror (13.34%) Ab muscle, chest, neck, head, shoulder L+R, arm L+R, forearm R, hand R, thigh L, shin, foot
Watch learning (14.40%) Hip, ab muscle, chest, neck, head, shoulder L+R, arm L+R, hand L+R, forearm R, shin, thigh R, toe

it may be indeed better to combine features. Overall, we could not
find statistically significant differences in the accuracies when using
different body parts for both motion and posture features, 𝑃 > .05.
Best body parts: The range of differences between body parts is more
pronounced for posture features (18.4 - 37.08%) than for motion
features (25.7 to 30.81%). The best features were left hand, forearm,
and arm as well as the thigh (center).
The left side achieved higher accuracy than the right: Among the top
features are often features that belong to the left side of the user’s
body. Figure 10 shows the results aggregated by the left, center, and
right sides of the body. It further shows that for motion features,
the left/right difference is marginal. For the posture features, a
slightly higher discrepancy is visible, with the left side achieving a
higher user identification score of 4.69%. However, we could not
find statistically significant differences between the left and the
right body parts on the classification accuracies, 𝑝 > .05
Motion is robust to body parts; posture is robust to tasks: We find that
when using motion-based features, the various body parts result
in similar accuracy scores on a range between 25.7 to 30.81%. The
high error bars also indicate that the task has a stronger effect on
motion than the actual body part, as we discussed in the previous
section (c.f., Fig. 5). On the other hand, for posture-based features,
we see a stronger effect of the body parts, ranging between 18.4%
to 37.08%. Thus, this points to posture feature being more robust to
task variations. From a high-level perspective, it can be expected
that motion is more affected by tasks that vary in their physical
exertion. Our analysis confirms this.

6.3 Best Feature Sets
Multimodal features [35] have the potential to a higher identifi-
cation quality than individual aspects. We conducted feature opti-
mization for the motion feature type. Table 2 shows the best feature
set for all tasks. We achieved the best accuracy (69.73%) for walking
while carrying glasses and plates where all (18) body parts were
involved in the task. Next up comes walking with glasses (67.49%)
where 14 body parts were involved in the motion. For walking
with empty glasses we achieved 62.40%. The least accurate activi-
ties were chatting (9.52%) and sitting down (11.15%) with 16 and
17 body parts involved in the recognition. These accuracy scores

Table 3: Hyperparameter optimization results across RF,
KNN, SVM and MLP (bold denotes best per task, numbers in
brackets denote model parameters used) in percentages

Task RF KNN SVM MLP
Walk 57.39 (500) 52.71 (5) 29.79 (10) 45.65
Walk + glasses 67.02 (500) 72.74 (5) 60.09 (10) 51.24
Walk + filled 71.58 (400) 74.32 (5) 67.34 (10) 62.34
Walk + plate 74.67 (500) 73.12 (5) 63.47 (10) 57.28
Stand up 37.73 (400) 33.25 (5) 41.84 (1) 32.37
Sit down 11.67 (400) 9.27 (5) 13.37 (10) 9.52
Chatting 10.22 (300) 11.27 (10) 4.80 (10) 6.17
Play game 15.06 (500) 6.00 (5) 1.92 (10) 6.97
Watch anim. 20.74 (400) 10.40 (5) 5.06 (1.0) 8.66
Watch horror 14.74 (500) 8.70 (15) 6.27 (0.1) 8.20
Watch learning 16.28 (500) 12.93 (10) 5.99 (10) 7.96

are the highest that was achieved in our analysis, indicating that
multimodal user identification is superior in our tested cases. To
complement these results, we trained all of the mentioned algo-
rithms with these feature sets and tested several hyperparameters
(see Table 3). The results show RF performing bets for most of the
tasks (55% of the tasks), followed by KNN (27%) and SVM (18%).

7 DISCUSSION
In this work, we investigated behavioral biometrics for user iden-
tification, and present the detailed quantification of the effects of
context factors on the uniqueness of behavioral traits exhibited
through motion. Some of the findings confirm prior findings, some
are as expected and now documented, and others can be considered
novel. In the following, we reflect on the main findings, and then
discuss on the human-centric approach and future work directions.

7.1 Main Findings & Insights
Gait-based user recognition improves when holding objects: Across
our walking conditions, we find clear evidence that user identifica-
tion improves when users are holding one object, and further with
both hands occupied. This reminded us of a finding from Buschek
et al.’s work [9], that focused on a different setting (touchscreen
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biometrics), but came to a similar insight. Targets on the screen
that is more difficult to select, such as those close to the screen’s
border, are allowed to elicit more unique user behavior. Our work
supports their insights and points to the more general property of
user identification that if the task is designed with more difficulty,
users are as well identified better.

Motion and posture data types depend: There is a trade-off between
feature types used for identification when a user can remain still
or in movement. In all our walking tasks, we find that motion is
best to identify users. In contrast, in the tasks where users were
mainly sitting, such as using their phone, we find absolute posture
information of the user’s body to be more unique. Here the posture
information is more useful to make inferences about the user. In
conclusion, a potential user identification system may ideally adapt
the used feature type to the user’s activity.

Why standing up may elicit more unique behavioral traits than
sitting down: Standing up and sitting down are brief and in our
tested conditions we found that standing up leads to more promis-
ing identification features. This may be accounted to the fact that
users are more free to choose how they stand up towards the open
space, contrasting sitting down to a specific location; something
that demands further study.

Device content matters: We also find that user identification ac-
curacy varies depending on the used smartphone app. We tested
two smartphone apps used in a seated position: playing a game and
chatting. We find that in a game, users were easier to identify than
from chatting, indicating the effect of the application and its UI de-
sign on identification quality. Playing a game involves an aspect of
engagement to the user, that users may approach more individually
than chatting. Another potential influential factor is the mobile UI,
as typing usually has a conforming, standard layout compared to
dynamic game elements which may lead to more unique behaviors.
Potentially, a similar effect occurs when users watched an animated
film compared to others, but there results are yet inconclusive.

7.2 Limitations
There are a few caveats that must be considered when interpreting
our findings. We focus on identification accuracy, leaving out other
important metrics around false positives and negatives. We found
that accuracy led to the most distinctions between the factors. We
thus omitted other metrics for brevity. In our work, we achieved
identification accuracies in the range of 30 to 75%. This is insuffi-
cient for real-world application. However, we believe it is sufficient
for understanding how different contextual factors compare. In
addition, the findings are inherently based on the given dataset,
which involved many factors but can also include effects from the
laboratory and motion tracking environment.

Further, our best feature sets describe the highest accuracy gained
with a particular context in mind. This is useful when the system
can assume that context information is available. However, if this is
not clear, the accuracy is likely to degrade. We note that the focus
of this work is not to achieve a working system, but to understand
the potential effects that differing contexts can have. Our findings
clearly show that accuracy is highly depending on contextual data,
and future authentication systems have the potential to greatly
improve if a better context recognition is used.

Yet, collectively our findings represent an extensive coverage of
the many factors and the relations of our body to inform those inter-
ested in the design of motion-based behavioral biometric systems.
Our work serves as the first groundwork in this matter (though not
exhaustive [37]) that is broad and transcends sensors and technol-
ogy through the focus on a human-centric approach.

7.3 Future Work
Concrete next steps can follow from the boundaries inherent to our
work. We focus on user identification and it is open whether the
findings translate to user authentication scenarios. Our work can
also be extended to how potential attacks on behavioral biomet-
ric authentication can be mitigated, for instance how and to what
extent each of the context factors and the body parts may be suscep-
tible to imitation attacks [1, 27]. It could be insightful to understand
whether some movements are easier to imitate, whereas others are
more dependent on anatomy than behavior. Furthermore, in the
cases that involve the detection of an attacker, the analysis needs
to consider different classifiers than the multi-class variant that we
used to train on the known set of users. Beyond these important ex-
tensions, there are further challenges with the potential to expand
the theme of our holistic analysis:

7.3.1 Fine-grained Analysis of User Interaction. With increasing
precision of motion sensors, it can become possible to focus on
more fine-grained user interactions such as how users interact in
the real world with their hands when grabbing and moving objects,
when gesturing, or in the interaction with computing devices. Past
work has already extensively explored specific devices, such as
the interaction centered around smartphones [9, 15], yet these
often focus on the user’s touch input or motion sensors internal
to the device. Although this already led to promising results, it is
potentially only marginally catching the user behavior that may
underlie the user’s finger, hand, and armmotion.Manual interaction
is a vast space, whether the user is interacting with an object, and
whether it is digital and/or interactive. This could also be interesting
with regards to more user-intrinsic physiological factors such as
the eye gaze of a user [32, 33], that is inherently coordinated with
the manual action [18] and in turn could amplify user identification
as a multimodal biometric.

7.3.2 Analysis of Device-centric User Identification. Our human
body focus was motivated by the prior strong focus on devices.
But we also felt that the corresponding prior art is scattered across
many research efforts. Although there are several surveys providing
extensive reviews [6, 42], a holistic analysis of available devices and
how they compare for the purpose of identification would clearly
complement our work.

7.3.3 Deployment & Real-world Validation. In the long run, the
technological advances of VR and AR devices may lead to full body
motion integrated into the user’s experience; it would then be
interesting to deploy a user identification system and validate our
findings. Such environments may allow obtaining motion data of
multiple people, which opens further questions as user behavior
may change when interacting and collaborating with others.
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8 CONCLUSION
This work presented a holistic analysis of body motion for user
identification that can be considered orthogonal to the prior device-
specific research. We conducted a data collection of high-precision
full-body motion with four context factors for 22 users across 18
body parts. This dataset was used for an extensive analysis of the
motion and posture information of the user as a metric to under-
stand the unique traits of persons. We provide an extensive analysis
of features useful for user identification, which features are more
descriptive based on which task and part of the user’s body. Our
findings highlight various factors for when users are still, in move-
ment, using their phone, or watching TV, and complement the
analysis with further classifier optimizations. Our work is useful to
better understand how people move uniquely, and what parameters
are useful to consider for behavioral biometric systems in smart
environments that can track user motion, to make systems more
secure as well as adapt the interface towards identified users.
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